|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (3): 66-75.doi: 10.16088/j.issn.1001-6600.2021071202
万黎明1, 张小乾2, 刘知贵2, 宋林2, 周莹3, 李理1*
WAN Liming1, ZHANG Xiaoqian2, LIU Zhigui2, SONG Lin2, ZHOU Ying3, LI Li1*
摘要: 肺癌是全球死亡率最高的癌症之一,肺结节作为肺癌早期诊断的重要依据,对其进行精准分割格外重要。为了帮助医生诊断肺部病变,本文提出一种改进的UNet肺结节分割方法。首先,在特征提取部分引入高效通道注意力网络(efficient channel attention for deep convolutional neural networks, EcaNet),提高UNet分割效果,使其具有良好的泛化能力。接着,为了降低模型参数量、提升算法分割性能,提出一种基于深度可分离卷积的特征融合模型,用深度可分离卷积代替传统卷积完成特征融合。然后,针对肺结节图像特点,将基于重叠度损失函数(dice loss)与加权交叉熵(weighted cross entropy, WCE)结合作为新的损失函数。最后,为验证所提算法Eca-UNet的有效性,在LIDC-IDRI肺结节公开数据集上进行评估。结果表明:Eca-UNet算法在DICE相似系数、MIOU上比UNet分割算法分别提高10.47、7.34个百分点;同时在训练速度上提升了10.10%,预测速度提升了11.56%。
中图分类号:
[1]赫捷, 李霓, 陈万青,等. 中国肺癌筛查与早诊早治指南(2021,北京)[J]. 中华肿瘤杂志, 2021, 43(3):243-268. DOI:10.3760/cma.j.cn112152-20210119-00060. [2]钟思华,郭兴明,郑伊能. 改进U-Net网络的肺结节分割方法[J]. 计算机工程与应用,2020,56(17):203-209. DOI:10.3778/j.issn.1002-8331.1911-0124. [3]RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Cham: Springer, 2015: 234-241.DOI:10.1007/978-3-319-24574-4_28. [4]易三莉,陈建亭,贺建峰. ASR-UNet:一种基于注意力机制改进的视网膜血管分割算法[J]. 山东大学学报(理学版),2021,56(9):13-20.DOI:10.6040/j.issn.1671-9352.0.2020.655. [5]王海鸥,刘慧,郭强,等.面向医学图像分割的超像素U-Net网络设计[J]. 计算机辅助设计与图形学学报,2019,31(6):1007-1017. [6]ZHANG Y, CHEN K T, CHANG K T, et al. Automatic breast and fibroglandular tissue segmentation in breast MRI using deep learning by a fully-convolutional residual neural network U-Net[J]. Academic Radiology, 2019, 26(11):1526-1535.DOI:10.1016/j.acra.2019.01.012. [7]王磐,强彦,杨晓棠,等.基于双注意力3D-UNet的肺结节分割网络模型[J].计算机工程,2021,47(2):307-313. DOI:10.19678/j.issn.1000-3428.0057019. [8]WU W H, GAO L, DUAN H H, et al. Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization[J]. Medical Physics, 2020, 47(9): 4054-4063. DOI:10.1002/mp.14248. [9]XIAO Z T, LIU B W ,GENG L, et al. Segmentation of lung nodules using improved 3D-UNet neural network[J]. Symmetry, 2020, 12(11):1787. DOI:10.3390/sym12111787. [10]王雪.基于U-Net多尺度和多维度特征融合的皮肤病变分割方法[J].吉林大学学报(理学版),2021,59(1):123-127.DOI:10.13413/j.cnki.jdxblxb.2020178. [11]伍长荣,接标,叶明全. CT图像肺结节计算机辅助检测与诊断技术研究综述[J].数据采集与处理,2016,31(5):868-881. DOI:10.16337/j.1004-9037.2016.05.003. [12]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE, 2016: 770-778.DOI: 10.1109/CVPR.2016.90. [13]邓文轩,杨航,靳婷.基于注意力机制的图像分类降维方法[J].广西师范大学学报(自然科学版),2021,39(2):32-40. DOI: 10.16088/j.issn.1001-6600.2020090704. [14]WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2020:11531-11539. [15]SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2018: 4510-4520. DOI:10.1109/CVPR. 2018.00474. [16]徐学良.人工神经网络的发展及现状[J].微电子学,2017,47(2):239-242. DOI:10.13911/j.cnki.1004-3365.2017.02.022. [17]LIU Y C, TAN D S, CHEN J C, et al. Segmenting hepatic lesions using residual attention U-Net with an adaptive weighted dice loss[C]// 2019 IEEE Conference on Image Processing(ICIP). Piscataway:IEEE, 2019:3322-3326. DOI:10.1109/ICIP.2019.8803471. [18]KINGMA D P, BA J.Adam: a method for stochastic optimizatio[EB/OL]. (2015-07-23)[2021-07-12]. https://arxiv.org/abs/1412.6980v8. DOI: 10.48550/arXiv.1412.6980. [19]ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.DOI:10.1007/978-3-030-00889-5_1. |
[1] | 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40-48. |
[2] | 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76-87. |
[3] | 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160. |
[4] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
[5] | 邓文轩, 杨航, 靳婷. 基于注意力机制的图像分类降维方法[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 32-40. |
[6] | 李维勇, 柳斌, 张伟, 陈云芳. 一种基于深度学习的中文生成式自动摘要方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 51-63. |
[7] | 王健, 郑七凡, 李超, 石晶. 基于ENCODER_ATT机制的远程监督关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 53-60. |
[8] | 王勋, 李廷会, 潘骁, 田宇. 基于改进模糊C均值聚类与Otsu的图像分割方法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 68-73. |
[9] | 武文雅, 陈钰枫, 徐金安, 张玉洁. 基于高层语义注意力机制的中文实体关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 32-41. |
[10] | 岳天驰, 张绍武, 杨亮, 林鸿飞, 于凯. 基于两阶段注意力机制的立场检测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 42-49. |
[11] | 夏海英. 基于改进的SLIC区域合并的宫颈细胞图像分割[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 93-100. |
[12] | 张新明, 张玉珊, 李振云. 一种改进的矩不变图像分割方法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 185-190. |
[13] | 冯嘉礼, 杨润泽. 属性论方法在图像分割中的应用研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 191-194. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |