|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 69-82.doi: 10.16088/j.issn.1001-6600.2020082902
宋睿, 徐铭, 唐元生*
SONG Rui, XU Ming, TANG Yuansheng*
摘要: Arikan于2009年提出的极化码是纠错编码理论领域的一大突破,也是近年来的研究热点,已广泛应用于5G通信等领域。本文主要研究作为极化码的推广的混合多核极化码的极化性。首先,利用随机切换信道概念,将以对称二元输入离散无记忆信道(BIDMC)为子信道构成的并行广播信道(PBC)的信道容量的一个重要下界推广到子信道中包含非对称BIDMC的情形;然后,放宽极化码构造中通用的信道组合与分裂策略(CAST)对基础信道对称性及等价性要求,并在基础信道是非对称BIDMC时,利用PBC信道容量的下界对CAST生成的各虚拟信道的最大对称容量进行估计;最后,通过分析混合多核极化码的编码矩阵与递归构造中使用的各CAST的关系,并利用CAST虚拟信道对称容量的估计,首次在基础信道为一般BIDMC的条件下,对混合多核极化码的极化性给出了严格证明。
中图分类号:
[1]ARlKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. [2]KORADA S B, ŞAŞOĞLU E, Urbanke R. Polar codes: Characterization of exponent, bounds, and constructions[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6253-6264. [3]MORI R. Properties and construction of polar codes[D]. Kyoto: Kyoto University, 2010. [4]MORI R, TANAKA T. Channel polarization on q-ary discrete memoryless channels by arbitrary kernels[C]// Proceedings of 2010 IEEE International Symposium on Information Theory(ISIT). Piscataway NJ: IEEE Press, 2010: 894-898. [5]ŞAŞOĞLU E. Polar coding theorems for discrete systems[D]. Lausanne, Switzerland: Swiss Federal Institute of Technology in Lausanne, 2011. [6]TRIFONOV P. Efficient design and decoding of polar codes[J]. IEEE Transactions on Communications, 2012, 60(11): 3221-3227. [7]TAL I, VARDY A. How to construct polar codes[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6562-6582. [8]MORI R, TANAKA T. Source and channel polarization over finite fields and Reed-Solomon matrices[J]. IEEE Transactions on Information Theory, 2014, 60(5): 2720-2736. [9]LIN H P, LIN S, ABDEL-GHAFFAR K A S. Linear and nonlinear binary kernels of polar codes of small dimensions with maximum exponents[J]. IEEE Transactions on Information Theory, 2015, 61(10): 5253-5270. [10]YE M, BARG A. Polar codes using dynamic kernels[C]// Proceedings of 2015 IEEE International Symposium on Information Theory(ISIT). Piscataway NJ: IEEE Press, 2015: 231-235. [11]LEE M K, YANG K. The exponent of a polarizing matrix constructed from the Kronecker product[J]. Designs, Codes and Cryptography, 2014, 70(3): 313-322. [12]GABRY F, BIOGLIO V, LAND I, et al. Multi-kernel construction of polar codes[C]// 2017 IEEE International Conference on Communications Workshops(ICC). Piscataway NJ: IEEE Press, 2017: 761-765. [13]BIOGLIO V, GABRY F, LAND I, et al. Minimum-distance based construction of multi-kernel polar codes[C]// IEEE Global Communications Conference(GLOBECOM). Piscataway NJ: IEEE Press, 2017: 1-6. [14]BENAMMAR M, BIOGLIO V, GABRY F, et al. Multi-kernel polar codes: Proof of polarization and error exponents[C]// 2017 IEEE Information Theory Workshop(ITW). Piscataway NJ: IEEE Press, 2017: 101-105. [15]COPPOLINO G, CONDO C, MASERA G, et al. A multi-kernel multi-code polar decoder architecture[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2018, 65(12): 4413-4422. [16]CHENG L, ZHOU W, ZHANG L. Hybrid multi-kernel construction of polar codes[C]// IEEE 89th Vehicular Technology Conference(VTC2019-Spring). Piscataway NJ: IEEE Press, 2019: 1-5. [17]JAYRAM T S, ARlKAN E. A note on some inequalities used in channel polarization and polar coding[J]. IEEE Transactions on Information Theory, 2018, 64(8): 5767-5768. [18]LIN J. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145-151. [19]LAND I, HOEHER P A, HUBER J. Bounds on information combining for parity-check equations[C]// International Zurich Seminar on Communications. Piscataway NJ: IEEE Press, 2004: 68-71. [20]LAND I, HUETTINGER S, HOEHER P A, et al. Bounds on information combining[J]. IEEE Transactions on Information Theory, 2005, 51(2): 612-619. [21]SUTSKOVER I, SHAMAI S, ZIV J. Extremes of information combining[J]. IEEE Transactions on Information Theory, 2005, 51(4): 1313-1325. [22]WYNER A D, ZIV J. A theorem on the entropy of certain binary sequences and applications: Part I[J]. IEEE Transactions on Information Theory,1973, 19(6): 772-777. [23]CHUNG K L. A course in probability theory[M]. 2nd ed. New York: Academic Press, 1974. [24]EL-KHAMY M, MAHDAVIFAR H, FEYGIN G, et al. Relaxed polar codes[J]. IEEE Transactions on Information Theory, 2017, 63(4): 1986-2000. |
[1] | 葛奕飞, 郑彦斌. 带有纠删或纠错性质的隐私保护信息检索方案[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 33-44. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |