|
广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (2): 134-143.doi: 10.16088/j.issn.1001-6600.2020.02.016
张杰, 李晓军*
ZHANG Jie, LI Xiaojun*
摘要: 本文研究无界域上一类带有白噪声的非自治随机反应扩散方程一致吸引子的存在性。首先通过对解的一致估计, 证明了对应于原方程的随机动力系统拥有关于符号空间的一致拉回吸收集;其次, 通过渐近尾部估计得到解是一致拉回渐近紧性, 从而得到原系统一致随机吸引子的存在性。
中图分类号:
[1] BABIN A V, VISHIK M I. Attractors of evolution equations[M]. Burlington, MA:Elsevier, 1992. [2] HALE J K. Asymptotic behaviour of dissipative systems[M].Providence,RI: MAA Press, 1988. [3] TEMAM R. Infinite dimensional dynamical systems in mechanics and physics[M].New York, NY: Springer ,1997. [4] FLANDOLI F, SCHMALFUSS B. Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise[J].Stochastics: An International Journal of Probability and Stochastic Processes,1996,59(1/2): 21-45. [5] CRAUEL H, DEBUSSCHE A, FLANDOLI F. Random attractors[J].Journal of Dynamics & Differential Equations,1997,9(2): 307-341. [6] CRAU E H, FLANDOLI F. Attractors for random dynamical systems[J].Probability Theory & Related Fields,1994,100(3): 365-393. [7] WANG B X. Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems[J].Journal of Differential Equations,2012,253(5): 1544-1583. [8] WANG B X. Random attractors for non-automonous stochastic wave equations with multiplicative noise[J].Discrete & Continuous Dynamical Systems-A,2014,34: 269-300. [9] CHEPYZHOV V V, VISHIK M I. Attractors for equations of mathematical physics[M]. Providence, RI: MAA Press, 2002. [10]CUI H Y, LANGA J A. Uniform attractors for non-autonomous random dynamical systems[J].Journal of Differential Equations,2017,263(2): 1225-1268. [11]SUN C Y, CAO D M, DUAN J Q. Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity[J]. Nonlinearity,2006,19: 2645-1268. [12]CAO D M, SUN C Y, YANG M H. Dynamics for a stochastic reaction-diffusion equation with additive noise[J]. Journal of Differential Equations, 2015, 259(3): 838-872. [13]BATES P W, LU K N, WANG B X. Random attractors for stochastic reaction-diffusion equations on unbounded domains[J].Journal of Differential Equations,2009,246: 845-869. [14]WANG Z J, ZHOU F. Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded damains[J].Journal of Applied Analysis and Computation,2015,5(3): 363-387. [15]WANG B X. Random attractors for non-autonomous stochastic wave equations with multiplicative noise[J].Discrete & Continuous Dynamical Systems-A,2014,34(1): 269-300. [16]WANG B X. Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamcial systems[J].Journal of Differential Equations,2012,253: 1544-1583. [17]ARNOLD L. Random dynamical systems[M]//Dynamical Systems. Berlin, Heidelberg:Springer,1995: 1-43. [18]LU K N, WANG B X. Wong-Zakai approximations and long term behavior of stochastic partial differential equations[J].Journal of Dynamics and Differential Equations, 2019,31: 1341-1371. |
[1] | 焦萌倩, 彭如月, 黄文韬, 蒋贵荣. 外激和参激作用下的三角翼飞行器滚转运动的随机响应[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 34-41. |
[2] | 佘连兵, 高云龙. 无界域上非自治Navier-Stokes方程的后向紧动力学[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 41-46. |
[3] | 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |