广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (2): 44-51.doi: 10.16088/j.issn.1001-6600.2019.02.006

• • 上一篇    下一篇

基于小增益定理的同步磁阻电机混沌控制

吴雷1, 阳丽2, 李啟尚1, 萧华鹏2*   

  1. 1.中国人民解放军95795部队教研部,广西桂林541003;
    2.广西师范大学物理科学与技术学院,广西桂林541004
  • 收稿日期:2018-07-14 出版日期:2019-04-25 发布日期:2019-04-28
  • 通讯作者: 萧华鹏(1981—),男,广西容县人,广西师范大学工程师,硕士。E-mail:xhuap@126.com
  • 基金资助:
    国家自然科学基金(11665007,11447106);广西自然科学基金联合资助培育项目(2018GXNSFAA138190);广西高校青年教师基础能力提升计划(2018KY0085);广西回国基金(桂科回0991021)

Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem

WU Lei1, YANG Li2, LI Qishang1, XIAO Huapeng2*   

  1. 1.Department of Teaching and Research, 95795 Troops of the PLA, Guilin Guangxi 541003, China;
    2.College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2018-07-14 Online:2019-04-25 Published:2019-04-28

摘要: 同步磁阻电机(SRM)在某些条件下会出现混沌运动,严重影响电机系统的动态性能和稳定运行,因此如何控制处于混沌运动时的同步磁阻电机是一个非常重要的问题。利用分岔图分析同步磁阻电机通向混沌的途径,揭示同步磁阻电机混沌吸引子的分形结构,同时分析了同步磁阻电机系统平衡点的局部稳定性,然后基于输入输出的状态稳定系统的小增益定理设计了简单反馈控制器,实现了对同步磁阻电机5个平衡点的镇定控制。

关键词: 同步磁阻电机, 小增益定理, 混沌控制, Lyapunov函数

Abstract: Since the synchronous reluctance motor will appear chaotic motion under certain conditions, the problem of how to stabilize chaotic motion in the synchronous reluctance motor is studied. In this paper,the bifurcation diagram is used to analyze the way of chaos for synchronous reluctance motor. The Poincare map reveals the fractal structure of the chaotic attractor of synchronous reluctance motor. And the local stability of the equilibrium point of the system is analyzed. Then a simple feedback controller is designed based on the small gain theorem of the input state stability system. The stabilization control of 5 equilibrium points of a synchronous reluctance motor is realized.

Key words: synchronous reluctance motor, small gain theorem, chaos control, Lyapunov function

中图分类号: 

  • O415.5
[1] CHUA L O,KOMURO M,MATSUMOTO T. The double scroll family[J]. IEEE Trans Circuits Syst,1986,33(11):1072-1118.
[2] GAO Y,CHAU K T. Hopf bifurcation and chaos in synchronous reluctance motor drives[J]. IEEE Trans Energy Conversion,2004,19(2):296-302.
[3] ZHANG B,QIU D,XIE F. Stability analysis of the coupled synchronous reluctance motor drives[J]. IEEE Trans Circuits Syst II Express Briefs, 2017,64(2):196-200.
[4] 吴雷,马姝靓,肖华鹏,等. 基于反馈线性化法的同步磁阻电机跟踪控制[J].广西师范大学学报(自然科学版),2017,35(4):10-16.
[5] 余红英,赵少雄,杨臻.同步磁阻电机自适应混沌同步控制仿真研究[J].计算机测量与控制,2016,24(11):67-70.
[6] 刘辉昭,陈晓霞. 分数阶同步磁阻电机的混沌与控制[J].河南师范大学学报(自然科学版),2017,45(4):47-52.
[7] ISIDORI A. Nonlinear control system Ⅱ[M].Berlin:Springer-Verlag,1999:1-13.
[8] 陈昌忠,何平.Victor-Carmen混沌系统的投影同步[J].华中师范大学学报(自然科学版),2016,50(4):521-524.
[9] XIAO J. Anti-synchronization of a new hyperchaotic system via small-gain theorem[J]. Chin Phys B,2010,19(10):100505.
[10] 文慧,张天平,朱秋琴.基于小增益定理的非线性系统的自适应动态面控制[J]. 东南大学学报(自然科学版),2008,38(2):145-149.
[11] ZHANG F,CHEN R. Dynamics of a new 5D hyperchaotic system of Lorenz type[J]. International Journal of Bifurcation and Chaos,2018,28(3):1850036 .
[12] BARBOZA R. On Lorenz and Chen systems[J]. International Journal of Bifurcation and Chaos,2018,28 (1):1850018.
[13] LAIPHRAKPAM D S,KHUMANTHEM M S. Cryptanalysis of symmetric key image encryption using chaotic Rossler system[J]. Optik,2017,135:200-209.
[14] BAO B,MA J. Dynamic game behavior of retailers considering the quality of substitute products based on delay decision[J]. International Journal of Bifurcation and Chaos,2018,27(13):1750206.
[15] GAO S,DONG H,NING B. Nonlinear mapping-based feedback technique of dynamic surface control for the chaotic PMSM using neural approximation and parameter identification[J].Iet Control Theory and Applications,2018,12 (6):819-827.
[1] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70.
[2] 吴 雷,马姝靓,肖华鹏,唐 文. 基于反馈线性化法的同步磁阻电机跟踪控制[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 10-16.
[3] 赵惟琦, 梁家荣, 李侠. 广义系统的有限时间终端滑模控制[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发