广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (1): 115-124.doi: 10.16088/j.issn.1001-6600.2019.01.013

• 第二十四届全国信息检索学术会议专栏 • 上一篇    下一篇

网络的平均度和规模对部分同步状态的影响

李珏璇1,2, 赵明1*   

  1. 1. 广西师范大学物理科学与技术学院,广西桂林541004;
    2. 广西科技师范学院机械与电气工程学院,广西来宾545004
  • 收稿日期:2017-11-14 发布日期:2019-01-08
  • 通讯作者: 赵明(1977—),女,辽宁鞍山人,广西师范大学教授,博士。E-mail:zhaom17@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11647001);广西自然科学基金(2015GXNSFGA139009)

Influence of Average Degree and Scale of Network on Partial Synchronization of Complex Networks

LI Juexuan1,2,ZHAO Ming1*   

  1. 1. College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Department of Physics and Information Science, Guangxi Science and Technology Normal University, Laibin Guangxi 545004, China
  • Received:2017-11-14 Published:2019-01-08

摘要: 本文从序参量和复杂度2个角度考察网络的平均度和规模对网络的部分同步状态的影响。结果表明,无论对于度分布比较均匀的随机网络、小世界网络还是度分布异质性比较强的配置无标度网络,只有在网络处于部分同步状态时,平均度才对序参量有显著的影响:平均度的增加使得3种网络的部分同步状态变好,相应的序参量变大;在不同的耦合强度区域,复杂度表现出不同的变化规律。当耦合强度较小时,随着网络规模的增加,网络部分同步状态变差,相应的复杂度变小。而对于规则的近邻耦合网络,网络平均度的增加使得网络的同步状态变好、复杂度增加,而网络规模的增加则使得网络的同步状态变差、复杂度减小。

关键词: 复杂网络, 平均度, 网络规模, 部分同步

Abstract: This paper investigates the influence of average degree and scale of network on the partial synchronization state of the complex networks. The research results show that average degree may have effects only when the networks are in partial synchronization states, whether the network model is random network, small-world network or uncorrelated configuration network. Increasing the average degree can improve the partial synchronization state for the three network models. However, this can make the complexity change in completely different ways at different coupling strength regions. As to the network scale, it may have effects on small coupling strength: increasing the network scale may worsen the synchronization state and decrease the complexity. For the nearest-neighbor network, with the increase of average degree, the synchronization state of the whole network may be better and the complexity may be larger; and with the increase of network scale, the synchronization state of the whole network may be worse and the complexity may be smaller. This research makes the partial synchronization state clearer and proposes useful suggestions for the construction of multi-function networks.

Key words: complex networks, average degree, network scale, partial synchronization

中图分类号: 

  • N941.4
[1] ERDOS P, RENYIR A. On random graphs[J]. I Publ Math (Debrecen),1959, 6: 290-297.
[2] ERDOS P, RENYIR A. On the evolution of random graphs[J]. Publ Math Inst Hung Acad Sci,1960, 5: 17.
[3] WATTS D J, STROGATZ S H. Collective dynamics of “small world” networks[J]. Nature,1998,393:440.
[4] BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science,1999,286:509.
[5] ARENAS A, DÍAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Phys Rep, 2008, 424: 175.
[6] MAY R M, ANDERSON R M. Infectious diseases of humans: dynamics and control[M]. Oxford: Oxford University Press, 1992.
[7] NOWAK M A. Evolutionary dynamics[M]. Cambridge, MA: Harvard University Press, 2006.
[8] BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464: 08932.
[9] PETTER H, JARI S. Temporal networks[J]. Phys Rep, 2012, 519: 97-125.
[10] STAM C J. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field[J]. Clin Neurophysiol, 2005, 116: 2266-2301.
[11] TONONI G, SPORNS O, EDELMAN G M. A measure for brain complexity: relating functional segregation and integration in the nervous system[J]. Proc Natl Acad Sci USA, 1994, 91: 5033-5037.
[12] SPORNS O, TONONI G, EDELMAN G M. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices[J]. Cereb Cortex, 2000, 10: 127-141.
[13] ZHAO M, ZHOU C, CHEN Y, et al. Complexity versus modularity and heterogeneity in oscillatory networks: Combining segregation and integration in neural systems[J]. Phys Rev E, 2010, 82: 046225.
[14] 赵明,牛亚兰,钟金秀,等. 网络的平均度对复杂网络上动力学行为的影响[J]. 广西师范大学学报(自然科学版),2012,30(3):88-93.
[15] CATANZARO M, BOGUNA M, PASTOR-SATORRAS R. Generation of uncorrelated random scale-free networks[J]. Phys Rev E, 2005, 71: 027103.
[16] WATTS D J. Networks, dynamics, and the small world phenomenon[J]. Am J Sociol, 1999, 105: 493-592.
[17] PECORA L M, CARROLL T L. Masterstability functions for synchronized coupled systems[J]. Phys Rev Lett, 1998, 80: 2109-2112.
[18] KURAMOTO Y. Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics[C]. Berlin: Springer-Verlag, 1975.
[1] 王 意,邹艳丽,李 可,黄 李. 分布式电站入网方式对电网同步的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 24-31.
[2] 陈德霞, 邹艳丽, 王意, 李可, 黄李. 加权网络上的多信息传播研究[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 14-24.
[3] 邹艳丽, 周秋花. BA无标度通信网络的级联故障研究[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 83-87.
[4] 赵明, 牛亚兰, 钟金秀, 梁凤军, 罗茳升, 郑木华. 网络的平均度对复杂网络上动力学行为的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发