广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (4): 68-75.doi: 10.16088/j.issn.1001-6600.2017.04.010

• • 上一篇    下一篇

一类分数阶微分方程两点边值问题正解的存在性

庞 杨,韦煜明*,冯春华   

  1. 广西师范大学数学与统计学院,广西桂林541006
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 韦煜明(1974—), 男, 广西桂平人,广西师范大学教授,博士。E-mail:ymwei@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11361010);广西自然科学基金(2014GXNSFAA118002);广西研究生教育创新计划(YCSW2017080);广西高等学校高水平创新团队及卓越学者计划;广西高校数学与统计模型重点实验室开放基金

Existence of Positive Solutions for a Class of Two-point BoundaryValue Problem of Fractional Differential Equations

PANG Yang,WEI Yuming*,FENG Chunhua   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 本文研究一类分数阶微分方程的两点边值问题:Dα0+u(t)=-f(t,u(t)), 0α0+是标准的Riemann-Liouville微分,f:[0,1]×[0,∞)→[0,∞)是连续函数。本文利用Banach压缩映像原理得到解的唯一性,并在较一般的非紧性测度条件下应用凝聚映射的不动点指数得到该边值问题正解的存在性。

关键词: 分数阶微分方程, 压缩映像原理, 凝聚映射, 不动点指数

Abstract: In this paper, a class of two-point boundary value problem of fractional differential equations are studied:Dα0+u(t)=-f(t,u(t)), 0α≤3, Dα0+ is the standard Riemann-Liouville fractional derivative. The uniqueness of solution of the fractional two-point boundary value problem is acquired by using Banach’s contraction mapping principle, and the existence of positive solutions for the boundary value problem is obtained by using the fixed point index of the cohesive mapping under the general noncompactness measure condition.

Key words: fractional differential equation, Banach’s contraction principle, cohesive mapping, fixed point index

[1] BAI Zhanbing, L Haishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505.DOI: 10.1016/j.jmaa.2005.02.052.
[2] KILBAS A A,SRIVASFAVA H M,TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Science,2006.
[3] NONNENMACHER T F, METZLER R. On the Riemann-Liouvile fractional calcules and some recent applications[J]. Fractals (Complex Geometry, Patterns, and Scaling in Nature and Society), 1995, 3(3): 557-566.DOI: 10.1142/S0218348X95000497.
[4] 张富平,周尚波,赵灿.基于分数阶偏微分方程的彩色图像去噪新方法[J].计算机应用研究,2013,30(3):946-949.DOI: 10.3969/j. issn.1001-3695.2013.03.079.
[5] BAI Zhanbing. On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Analysis (Theory Methods and Applications),2010,72(2):916-924. DOI:10.1016/j.na.2009.07.033.
[6] 宋利梅,翁佩萱.四阶泛函微分方程边值问题正解的存在性[J].高校应用数学学报(A辑),2011,26(1):67-77.DOI:10.13299/j.cnki.amjcu.001631.
[7] 戴琛.一类分数阶积分多点边值问题正解的存在性[J].长春师范大学学报(自然科学版),2014,33(4):3-6.
[8] 陆心怡,张兴秋,王林.一类分数阶微分方程m点边值问题正解的存在性[J].系统科学与数学,2014,34(2):218-230.
[9] 秦丽娟.Banach空间中脉冲微分方程初值问题解的存在性[J].应用数学学报,2013,36(2):249-256.DOI:10.3969/j.issn.0254-3079.2013.02.007.
[10] 梁秋燕.有序Banach空间分数阶微分方程边值问题正解的存在性[J].河南师范大学学报(自然科学版),2014,42(1):16-20.DOI:10.16366/j.cnki.1000-2367.2014.01.004.
[11] LIANG Sihua, ZHANG Jihui.Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval[J].Computers and Mathematics with Applications,2011,61(11):3343-3354.DOI: 10.1016/j.camwa.2011.04.018.
[12] 郭大钧. 非线性泛函分析[M]. 北京: 高等教育出版社, 2015.
[13] 郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].济南:山东科学技术出版社,2006.
[14] 李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报,2005,48(6):1089-1094.DOI:10.3321/j.issn:0583-1431.2005.06.006.
[15] 郭大钧,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,1998.
[16] HEINZ H P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions[J].Nonlinear Analysis (Theory, Methods and Applications),1983,7(12):1351-1371.DOI: 10.1016/0362-546X(83)90006-8.
[1] 朱娅萍, 屈国荣, 范江华. 不动点指数法研究拟变分不等式解的存在性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 79-85.
[2] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49.
[3] 闫荣君, 韦煜明, 冯春华. p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发