|
广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (4): 68-75.doi: 10.16088/j.issn.1001-6600.2017.04.010
庞 杨,韦煜明*,冯春华
PANG Yang,WEI Yuming*,FENG Chunhua
摘要: 本文研究一类分数阶微分方程的两点边值问题:Dα0+u(t)=-f(t,u(t)), 0
[1] BAI Zhanbing, L Haishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505.DOI: 10.1016/j.jmaa.2005.02.052. [2] KILBAS A A,SRIVASFAVA H M,TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Science,2006. [3] NONNENMACHER T F, METZLER R. On the Riemann-Liouvile fractional calcules and some recent applications[J]. Fractals (Complex Geometry, Patterns, and Scaling in Nature and Society), 1995, 3(3): 557-566.DOI: 10.1142/S0218348X95000497. [4] 张富平,周尚波,赵灿.基于分数阶偏微分方程的彩色图像去噪新方法[J].计算机应用研究,2013,30(3):946-949.DOI: 10.3969/j. issn.1001-3695.2013.03.079. [5] BAI Zhanbing. On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Analysis (Theory Methods and Applications),2010,72(2):916-924. DOI:10.1016/j.na.2009.07.033. [6] 宋利梅,翁佩萱.四阶泛函微分方程边值问题正解的存在性[J].高校应用数学学报(A辑),2011,26(1):67-77.DOI:10.13299/j.cnki.amjcu.001631. [7] 戴琛.一类分数阶积分多点边值问题正解的存在性[J].长春师范大学学报(自然科学版),2014,33(4):3-6. [8] 陆心怡,张兴秋,王林.一类分数阶微分方程m点边值问题正解的存在性[J].系统科学与数学,2014,34(2):218-230. [9] 秦丽娟.Banach空间中脉冲微分方程初值问题解的存在性[J].应用数学学报,2013,36(2):249-256.DOI:10.3969/j.issn.0254-3079.2013.02.007. [10] 梁秋燕.有序Banach空间分数阶微分方程边值问题正解的存在性[J].河南师范大学学报(自然科学版),2014,42(1):16-20.DOI:10.16366/j.cnki.1000-2367.2014.01.004. [11] LIANG Sihua, ZHANG Jihui.Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval[J].Computers and Mathematics with Applications,2011,61(11):3343-3354.DOI: 10.1016/j.camwa.2011.04.018. [12] 郭大钧. 非线性泛函分析[M]. 北京: 高等教育出版社, 2015. [13] 郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].济南:山东科学技术出版社,2006. [14] 李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报,2005,48(6):1089-1094.DOI:10.3321/j.issn:0583-1431.2005.06.006. [15] 郭大钧,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,1998. [16] HEINZ H P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions[J].Nonlinear Analysis (Theory, Methods and Applications),1983,7(12):1351-1371.DOI: 10.1016/0362-546X(83)90006-8. |
[1] | 朱娅萍, 屈国荣, 范江华. 不动点指数法研究拟变分不等式解的存在性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 79-85. |
[2] | 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49. |
[3] | 闫荣君, 韦煜明, 冯春华. 带p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |