|
广西师范大学学报(自然科学版) ›› 2016, Vol. 34 ›› Issue (3): 131-137.doi: 10.16088/j.issn.1001-6600.2016.03.019
张渝1,2, 刘玉洁1,2, 郭丹妮1,2, 覃信梅1,2, 韩愈1,2, 李惠敏1,2, 秦新民1,2
ZHANG Yu1,2, LIU Yujie1,2, GUO Danni1,2, QIN Xinmei1,2, HAN Yu1,2, LI Huimin1,2, QIN Xinmin1,2
摘要: 利用高通量测序技术对沙田柚自交和异交花柱进行转录组测序,差异分析得到沙田柚WRKY转录因子的序列。该基因的全长序列为1 178 bp (GenBank accession No. KU173833),含有993 bp的开放阅读框(ORF)可编码330个氨基酸,编码蛋白的相对分子质量为37.00 ku,理论等电点为5.79。与未授粉的花柱相比,沙田柚异花授粉1、2、3 d花柱中WRKY转录因子基因的表达量(RPKM)分别为5.67、26.04、17.08;而自花授粉1、2、3 d花柱中WRKY转录因子基因的表达量(RPKM)分别为15.67、14.96、3.89。氨基酸序列分析表明,该氨基酸序列与甜橙、金桔的同源性分别为98%、97%。系统进化分析发现沙田柚WRKY转录因子与甜橙、金桔的亲缘关系很近,属于一个分支。
中图分类号:
[1] PAETSCH M, MAYLAND-QUELLHORST S, NEUFFER B. Evolution of the self-incompatibility system in the Brassicaceae, identification of S-locus receptor kinase(SRK) in self-incompatible Capsella grandiflora[J]. Heredity, 2006,97:283-290. [2] SHIBA H, PARK J I, SUZUKI G, et al. Duplicated SP11genes produce alternative transcripts in the S15 haplotype of Brassica oleracea[J]. Genes and Systems, 2004,79:87-93. [3] SHIMOSATO H, YOKOTA N, SHIBA H, et al. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself-recognition in brassica self-incompatibility[J]. The Plant Cell, 2007,19:107-117. [4] ANDERSON M A, CORNISH E C, MAU S L, et al. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Naicotiana alal[J]. Nature,1986,321:38-44. [5] HUA Z, MENG X, KAO T H. Comparison of Petunis inflata S-locus F-box protein(Pi SLF) with Pi SLFlike proteins reveals its unique function in S-RNase based self-incompatibility[J]. The Plant Cell, 2007:19:3593-3609. [6] VAUGHAN S P, RAMANE H, WATARI A, et al. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P.mume[J]. The Plant Journal, 2004,39:573-586. [7] 秦新民,张渝,刘玉洁,等.沙田柚S-RNase基因的克隆及序列分析[J].广西师范大学学报(自然科学版),2015,33(1):139-145. [8] DE GRAFF B H, VATOVEC S, JUAREZ-DIAZ J A, et al. The Papaver self-incompatibility pollen S-determinant, PrpS, function in Arabidopsis thaliana[J]. Current Biology, 2012,22:154-159. [9] MCCLURE B, MOU B, CANEVASCINI S, et al. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana[J]. Proc Natl Acad Sci USA ,199,96:13548-13553. [10] GOLDRAIJ A, KONDO K, LEE C B, et al. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana[J]. Nature, 2006,439:805-810. [11] NATHAN HANCOCK C, KENT L, MCCLURE B A. The stylar120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana[J]. Plant J, 2005,43:716-723. [12] DISTEFANO G, CARUSO M, LA MALFA S, et al. Histological and molecular analysis of pollen-pistil interaction in Clementine[J]. Plant Cell Rep, 2009,281:439-1451. [13] ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’upstream regions of genes coding for sporamin and b-amylase from sweet potato[J]. Mol Gen Genet, 1994,244:563-571. [14] RUSHTON P J,MACDONALD H, HUTTLY A K, et al. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a-Amy2 genes[J]. Plant Mol Biol, 1995,29:691-702. [15] RUSHTON P J, TORRES J M, WERNERT P, et al. Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. EMBO J, 1996,15:5690-5700. [16] DE PATER S, GRECO V, PHAM K, et al. Characterization of a zinc-dependent transcriptional activator from Arabidopsis[J]. Nucleic Acids Res, 1996,24:4624-4631. [17] BAKKHI M, OELMULLER R. WRKY transcription factors: Jack of many trades in plants[J]. Plant Signaling and Behavior, 2014, 9(2): e27700. [18] 宋钰,荆邵娟,余迪求.水稻WRKY转录调控因子基因功能研究进展[J]. 中国水稻科学,2009,23(5):447-455. [19] ZHOU X, JIANG Y, YU D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis[J]. Molecules and Cells, 2011, 31: 303-313. [20] BARIOLA P A, HOWARD C J, TAYLOR C B, et al. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation[J]. The Plant Journal, 1994, 6: 673-685. [21] ZHANG S W, HUANG G X, DING F, et al. Mechanism of seedlessness in a new lemon cultivar‘Xiangshui’ [Citrus limon (L.) Burm. F][J]. Sex Plant Reprod,2012, 25:337-345. [22] ZHANG S, DING F, HE X, et al. Characterization of the ‘Xiangshui’lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility[J]. Molecular Genetics and Genomics, 2015, 290: 365-375. [23] AGARWAL P, REDDY M P, CHIKARA J. WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants[J]. Molecular biology reports, 2011, 38: 3883-3896. [24] RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15: 247-258. [25] GUAN Y, MENG X, KHANNA R, et al. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis[J]. Plos Genetics, 2014, 10:1-12. [26] LUO M, DENNIS E S, BERGER F, et al. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 17531-17536. [27] ROBATZEK S, SOMSSICH I E. A new member of the Arabidopsis WRKY transcripyion factor family, AtWRKY6, is associated with both senescence-and defence-related processes[J]. The Plant Journal, 2001, 2:123-133. [28] 李欢,何炎森,李科,等. 多花水仙WRKY转录因子的克隆与序列分析[J]. 热带作物学报,2014,35(12):2378-2383. |
[1] | 秦新民, 张渝, 刘玉洁, 郭丹妮, 李惠敏. 沙田柚S-RNase基因的克隆及序列分析[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 139-145. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |