|
广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (3): 79-90.doi: 10.16088/j.issn.1001-6600.2015.03.013
徐蕾, 邓国和
XU Lei, DENG Guo-he
摘要: 本文考虑标的股价满足Hull-White随机波动率模型的浮动执行价格的欧式回望期权定价。应用Taylor展开技术, 获到了回望看涨期权价格及其Δ对冲的近似显示解公式。数值结果表明,近似显示解公式与Monte Carlo模拟法相比具有很好的准确性和有效性,且易于实际应用。最后,利用数值实例分析了期权价格和Δ对冲策略受波动率模型中各主要参数的影响。
中图分类号:
[1] HE Hua, KEIRSTEAD W P, REBBOLZ J. Double lookbacks[J]. Mathematical Finance, 1998, 8(3): 201-228. [2] LEE H. Pricing equity-indexed annuities with path-dependent options[J]. Insurance: Mathematics and Economics, 2003, 33(3): 677-690. [3] HYER T, LIPTON-LIFSCHITZ A, PUGACHEVSKY D. Passport to success[J]. Risk, 1997, 10(9):127-131. [4] GOLDMAN M B, SOSIN H B, GATTO M A. Path dependent options: buy at the low, sell at the high[J]. Journal of Finance, 1979, 34(5): 1111-1127. [5] CONZE A, VISWANATHAN R. Path dependent options: the case of lookback options[J]. Journal of Finance, 1991, 46(5): 1893-1907. [6] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. The Journal of Political Economy, 1973, 81(3): 637-654. [7] DAI Min, WONG H Y, KWOK Y K. Quanto lookback options[J]. Mathematical Finance, 2004, 14(3): 445-467. [8] WONG H Y, KWOK Y K. Sub-replication and replenishing premium: efficient pricing of multi-state lookbacks[J]. Review of Derivatives Research, 2003, 6(2): 83-106. [9] HEYNEN R C, KAT H M. Lookback options with discrete and partial monitoring of the underlying price[J]. Appl Math Finance, 1995, 2(4): 273-284. [10] BUCHEN P, KONSTANDATOS O. A new method of pricing lookback options[J]. Mathematical Finance, 2005, 15(2): 245-259. [11] LAI T L, LIM T W. Exercise regions and efficient valuation of American lookback options[J]. Mathematical Finance, 2004, 14(2): 249-269. [12] BAKSHI G, CAO C, CHEN Zhi-wu. Empirical performance of alternative option pricing models[J]. Journal of Finance, 1997, 52(5): 2003-2049. [13] HULL J, WHITE A. The pricing of options on assets with stochastic volatility[J]. Journal of Finance, 1987, 42(2): 281-300. [14] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. Reviews of Financial Studies, 1993, 6(2): 327-343. [15] FORSYTH P A, VETZAL K R, ZVAN R. A finite element approach to the pricing of discrete lookbacks with stochastic volatility[J]. Applied Mathematical Finance, 1999, 6(2): 87-106. [16] WONG H Y, CHAN C M. Lookback options and dynamic fund protection under multiscale stochastic volatility[J]. Insurance: Mathematics and Economics, 2007, 40(3): 357-385. [17] PARK S H, KIM J H. A semi-analytic pricing formula for lookback options under a general stochastic volatility model[J]. Statistics and Probability Letters, 2013, 83(11): 2537-2543. [18] LEUNG K S. An analytic pricing formula for lookback options under stochastic volatility[J]. Applied Mathematics Letters, 2013, 26(1): 145-149. [19] SABANIS S. Stochastic volatility[J]. International Journal of Theoretical and Applied Finance, 2002, 5(5): 515-530. [20] 温鲜, 邓国和, 霍海峰. Hull-White随机波动率模型的欧式障碍期权[J]. 广西师范大学学报:自然科学版, 2009, 27(4): 49-52. [21] DUFFIE D, PAN Jun, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6): 1343-1376. |
[1] | 温鲜, 邓国和. 随机波动率下障碍期权定价的对偶Monte Carlo模拟[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 90-97. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |