广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (3): 79-90.doi: 10.16088/j.issn.1001-6600.2015.03.013

• • 上一篇    下一篇

随机波动率模型下欧式回望期权定价

徐蕾, 邓国和   

  1. 广西师范大学数学与统计学院,广西桂林541004
  • 收稿日期:2015-04-12 出版日期:2015-05-10 发布日期:2018-09-20
  • 通讯作者: 邓国和(1969—),男,湖南桂阳人,广西师范大学教授,博士。E-mail: dengguohe@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11461008);教育部人文社会科学研究规划基金资助项目(13YJA910003);广西自然科学基金资助项目(2013GXNSFAA019005);广西高等学校科学技术研究重点项目(2013ZD010)

Valuation on European Lookback Option under Stochastic Volatility Model

XU Lei, DENG Guo-he   

  1. College of Mathematics and Statistics, Guangxi Normal University,Guilin Guangxi 541004, China
  • Received:2015-04-12 Online:2015-05-10 Published:2018-09-20

摘要: 本文考虑标的股价满足Hull-White随机波动率模型的浮动执行价格的欧式回望期权定价。应用Taylor展开技术, 获到了回望看涨期权价格及其Δ对冲的近似显示解公式。数值结果表明,近似显示解公式与Monte Carlo模拟法相比具有很好的准确性和有效性,且易于实际应用。最后,利用数值实例分析了期权价格和Δ对冲策略受波动率模型中各主要参数的影响。

关键词: Hull-White模型, 回望期权, Taylor展开技术, Monte Carlo模拟

Abstract: The valuation on European lookback option with floating strike price is considered under the Hull-White stochastic volatility model. Using the Taylor series expansion technique, the approximated explicit formulas for the price and delta value of the European lookback option are obtained. Numerical experiments show that the proposed explicit formula performs accurately and efficiently compared with Monte Carlo simulation, and is easy to implement in practice. Finally, the impacts of the key parameters in the volatility process on both the option price and its delta value are analyzed through numerical examples.

Key words: Hull-White model, lookback options, Taylor series expansion technique, Monte Carlo simulation

中图分类号: 

  • O211.9
[1] HE Hua, KEIRSTEAD W P, REBBOLZ J. Double lookbacks[J]. Mathematical Finance, 1998, 8(3): 201-228.
[2] LEE H. Pricing equity-indexed annuities with path-dependent options[J]. Insurance: Mathematics and Economics, 2003, 33(3): 677-690.
[3] HYER T, LIPTON-LIFSCHITZ A, PUGACHEVSKY D. Passport to success[J]. Risk, 1997, 10(9):127-131.
[4] GOLDMAN M B, SOSIN H B, GATTO M A. Path dependent options: buy at the low, sell at the high[J]. Journal of Finance, 1979, 34(5): 1111-1127.
[5] CONZE A, VISWANATHAN R. Path dependent options: the case of lookback options[J]. Journal of Finance, 1991, 46(5): 1893-1907.
[6] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. The Journal of Political Economy, 1973, 81(3): 637-654.
[7] DAI Min, WONG H Y, KWOK Y K. Quanto lookback options[J]. Mathematical Finance, 2004, 14(3): 445-467.
[8] WONG H Y, KWOK Y K. Sub-replication and replenishing premium: efficient pricing of multi-state lookbacks[J]. Review of Derivatives Research, 2003, 6(2): 83-106.
[9] HEYNEN R C, KAT H M. Lookback options with discrete and partial monitoring of the underlying price[J]. Appl Math Finance, 1995, 2(4): 273-284.
[10] BUCHEN P, KONSTANDATOS O. A new method of pricing lookback options[J]. Mathematical Finance, 2005, 15(2): 245-259.
[11] LAI T L, LIM T W. Exercise regions and efficient valuation of American lookback options[J]. Mathematical Finance, 2004, 14(2): 249-269.
[12] BAKSHI G, CAO C, CHEN Zhi-wu. Empirical performance of alternative option pricing models[J]. Journal of Finance, 1997, 52(5): 2003-2049.
[13] HULL J, WHITE A. The pricing of options on assets with stochastic volatility[J]. Journal of Finance, 1987, 42(2): 281-300.
[14] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. Reviews of Financial Studies, 1993, 6(2): 327-343.
[15] FORSYTH P A, VETZAL K R, ZVAN R. A finite element approach to the pricing of discrete lookbacks with stochastic volatility[J]. Applied Mathematical Finance, 1999, 6(2): 87-106.
[16] WONG H Y, CHAN C M. Lookback options and dynamic fund protection under multiscale stochastic volatility[J]. Insurance: Mathematics and Economics, 2007, 40(3): 357-385.
[17] PARK S H, KIM J H. A semi-analytic pricing formula for lookback options under a general stochastic volatility model[J]. Statistics and Probability Letters, 2013, 83(11): 2537-2543.
[18] LEUNG K S. An analytic pricing formula for lookback options under stochastic volatility[J]. Applied Mathematics Letters, 2013, 26(1): 145-149.
[19] SABANIS S. Stochastic volatility[J]. International Journal of Theoretical and Applied Finance, 2002, 5(5): 515-530.
[20] 温鲜, 邓国和, 霍海峰. Hull-White随机波动率模型的欧式障碍期权[J]. 广西师范大学学报:自然科学版, 2009, 27(4): 49-52.
[21] DUFFIE D, PAN Jun, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6): 1343-1376.
[1] 温鲜, 邓国和. 随机波动率下障碍期权定价的对偶Monte Carlo模拟[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 90-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发