广西师范大学学报(自然科学版) ›› 2014, Vol. 32 ›› Issue (3): 61-64.

• • 上一篇    下一篇

Mlinex损失函数下逆伽马分布尺度参数的Bayes估计

丁新月, 徐美萍   

  1. 北京工商大学理学院,北京100048
  • 收稿日期:2014-03-22 出版日期:2014-09-25 发布日期:2018-09-25
  • 通讯作者: 徐美萍(1971—),女,山西太原人,北京工商大学副教授,博士。E-mail: xumeiping2006@163.com
  • 基金资助:
    国家自然科学基金资助项目(61304155);北京市委组织部优秀人才项目(2012D005003000005);北京工商大学学术专著出版资助项目(ZZCB 2012-17)

Bayesian Estimation for Scale Parameter of Inverse Gamma Distribution under Mlinex Loss Function

DING Xin-yue, XU Mei-ping   

  1. School of Science, Beijing Technology and Business University, Beijing 100048, China
  • Received:2014-03-22 Online:2014-09-25 Published:2018-09-25

摘要: 在Mlinex损失函数下, 本文首次讨论了逆伽马分布尺度参数的Bayes估计及其可容许性, 并对该分布的一个充分统计量的逆线性形式的容许性进行了分析, 然后使用蒙特卡洛模拟阐明小样本情形下尺度参数的 Bayes估计的精度一般优于其最大似然估计和Minimax估计, 与一致最小方差无偏估计相当。

关键词: 逆伽马分布, Mlinex损失函数, Bayes估计, 可容许性

Abstract: Under Mlinex loss function, Bayesian estimation and its admissibility for the scale parameter of inverse gamma distribution are discussed for the first time, and the admissibility of the inverse linear form of a sufficient statistics is also analyzed. Then, Monte Carlo simulation is used to clarify the better performance of Bayes estimate than the maximum likelihood and the minimax estimates, which is as good as the uniformly minimum variance unbiased estimate from estimated error for small samples.

Key words: inverse gamma distribution, Mlinex loss function, Bayesian estimation, admissibility

中图分类号: 

  • O212.5
[1] 熊海林,邓方林,沈永福,等. 逆Gamma分布参数的一种矩估计法[C]//2001中国控制与决策学术年会论文集. 沈阳:东北大学出版社,2001:332-334.
[2] 赵宜楠,李风从,尹彬. 严重拖尾复合高斯杂波中目标的自适应极化检测[J]. 电子与信息学报, 2013, 35(2):376-380.
[3] 邹鲲,赵修斌,田孝华,等. 非高斯杂波中知识辅助的信号检测算法[J]. 信号处理, 2012, 28(1):60-66.
[4] 柏跃迁. 正态均值线性估计的可容许性[J]. 重庆工商大学学报:自然科学版, 2007, 24(5):445-447.
[5] 王忠强,王德新,宋立新. 一种对称损失函数下正态总体刻度参数的估计[J]. 应用数学学报, 2004, 27(2):310-323.
[6] PODDER C K, ROY M K, BHNIYAN K J, et a1. Minimax estimation of the parameter of the Pareto distribution for quadratic and MLINEX loss functions[J]. Pak J Statist, 2004, 20(1):137-149.
[7] 任海平,杨连武,廖莉. 对数误差平方损失函数和MLINEX损失函数下一类分布族参数的Minimax估计[J]. 江西师范大学学报:自然科学版, 2009,33(3):326-330.
[8] 茆诗松,王静龙,濮晓龙. 高等数理统计[M]. 2版. 北京:高等教育出版社, 2006.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发