|
广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (3): 65-71.
张亚玲1, 穆学文2
ZHANG Ya-ling1, MU Xue-wen2
摘要: 二阶锥规划是一个非光滑的凸规划问题,在电子工程、控制论、组合优化等许多工程问题中有着广泛的应用。提出了一种求解二阶锥规划的Barzilai-Borwein 梯度算法。首先基于二阶锥规划的最优性条件,二阶锥规划问题被等价转化为等式系统。然后利用一种有效的光滑技巧把二阶锥转化为光滑函数,该等式系统等价转化为一个光滑的无约束优化问题。最后利用Barzilai-Borwein梯度法求解该无约束优化问题。Barzilai-Borwein梯度法是一种有效的一阶梯度算法,理论证明了该算法的收敛性。通过4个仿真算例测试提出的算法,实验结果表明了该算法有着较高的精度,需要较少的计算时间,所以该算法是可行的和有效的。
中图分类号:
[1] LOBO M S,VANDENBERGHE L,BOYD S,et al.Application of second order cone programming[J].Linear Algebra and Its Applications,1998,284(1):193-228. [2] BENSON H Y,VANDERBEI R J.Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming[J].Math Program:Series B,2003,95(2):279-302. [3] LEBRET H,BOYD S.Antenna array pattern synthesis via convex optimization[J].IEEE Transactions on Signal Processing,1997,45(3):526-532. [4] LU Wu-sheng,HINAMOTO T.Optimal design of IIR digital filters with robust stability using conic-quadratic-programming updates[J].IEEE Transactions on Signal Processing,2003,51(6):1581-1592. [5] MURAMATSU M,SUZUKI T.A new second-order cone programming relaxation for Max-cut problems[J].Journal of the Operations Research Society of Japan,2003,46(2):164-177. [6] LUO Zhi-quan.Applications of convex optimization in signal processing and digital communication[J].Math Program:Series B,2003,97(1/2):177-207. [7] RIKA I,FUJIE T,SUYAMA K,et al.Design methods of FIR filters with signed power of two coefficients using a new linear programming relaxation with triangle inequalities[J].International Journal of Innovative Computing,Information and Control,2006,2(1):441-448. [8] MONTEIRO R D C,TAKASHI T.Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[J].Math Program:Series B,2000,88(1):61-83. [9] ALIZADEH F,GOLDFARB D.Second-order cone programming[J].Math Program:Series B,2003,95(1):3-51. [10] KUO Yu-ju,MITTELMANN H D.Interior point methods for second-order cone programming and OR applications[J].Computational Optimization and Application,2004,28(3):255-285. [11] CAI Zhi,TOH K C.Solving SOCP via a reduced augmented system[J].SIAM Journal on Optimization,2006,17(3):711-737. [12] CHEN X D,SUN D,SUN J.Complementarity functions and numerical experiments for second-order cone complementarity problems[J].Computational Optimization and Applications,2003,25(1/3):39-56. [13] FUKUSHIMA M,LUO Zhi-quan,TSENG P.Smoothing functions for second-order cone complementarity problems[J].SIAM Journal on Optimization,2002,12(2):436-460. [14] CHEN Jein-shan,TSENG P.An unconstrained smooth minimization reformulation of the second-order cone complementarity problems[J].Mathematical Programming:Series B,2005,104(2/3):293-327. [15] KANZOW C,FERENCZI I,FUKUSHIMA M.On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity[J].SIAM Journal on Optimization,2009,20(1):297-320. [16] 陆春桃.一些修正的线搜索及其收敛性[J].广西师范学院学报:自然科学版,2006,23(2):13-19. [17] LEUNG Y,CHEN Kai-zhou,JIAO Yong-chang,et al.A new gradient-based neural network for solving linear and quadratic programming problems[J].IEEE Eransactions on Neural Networks,2001,12(5):1074-1083. [18] BARZILAI J,BORWEIN J M.Two point step size gradient methods[J].IMA J Numer Anal,1988,8(1):141-148. [19] SCALLE J L,LEFSCHETZ S.Stability by Lyapunov's Direct Method with Applications[M].New York:Academic,1961:61-81. [20] GHAOUI L E,LEBRET H.Robust solutions to least-squares problems with uncertain data[J].SIAM Journal on Matrix Analysis and Applications,1997,18(4):1035-1064. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |