广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (3): 144-151.

• • 上一篇    下一篇

基于多时相遥感影像的滨海湿地监测方法研究

慈慧1,2, 郭朋辉1, 秦勇1,2, 杨慧1,2   

  1. 1.中国矿业大学资源与地球科学学院,江苏徐州221116;
    2.煤层气资源及成藏过程教育部重点实验室,江苏徐州221116
  • 收稿日期:2013-04-20 出版日期:2013-09-20 发布日期:2018-11-26
  • 通讯作者: 慈慧(1981—),女,辽宁丹东人,中国矿业大学讲师,博士。E-mail:cihui@163.com
  • 基金资助:
    国家自然科学青年基金资助项目(41202237,41001230);江苏高校优势学科建设工程资助项目;徐州市科技项目(XM12B073);中国矿业大学课程建设与教学改革项目(2001227);中国矿业大学资源与地球科学学院课程建设与教学改革项目

Study on Coastal Wetlands Monitoring Using Multi-temporal Remote Sensing Image

CI Hui1,2, GUO Peng-hui1, QIN Yong1,2, YANG Hui1,2   

  1. 1.School of Mineral Resources and Earth Science,China University of Mining and Technology, Xuzhou Jiangsu 221116,China;
    2.Key Laboratory of CBM Resources and Pooling Process, Ministry of Education of China,Xuzhou Jiangsu,221116,China
  • Received:2013-04-20 Online:2013-09-20 Published:2018-11-26

摘要: 湿地的现状及其变化趋势对于湿地开发、利用、管理及保护政策的制定至关重要。以江苏省典型滨海湿地为研究对象,利用2002年5月和2007年6月的Landsat7 ETM+图像数据,在分析湿地特征及其遥感图像表征的基础上,通过对湿地多光谱遥感图像特征向量的分析,对2002年的影像进行基于知识规则的信息提取,对2007年的影像采用监督分类与非监督分类相结合的方法进行分类,两者都取得了较为理想的分类结果,最后对分类后的两期影像分别采用分类后比较法和RB-NDVI-NDMI法进行滨海湿地的变化监测。经对比发现,这两种方法得到的总体变化基本一致,都显示研究区的湿地面积正在减少,自然湿地退化较为严重,且更多地转变为稻田和旱地。两种监测方法各有利弊,前者易受分类精度的影响,后者易受选取图像纹理特征的影响。

关键词: 江苏省滨海湿地, 信息提取, 变化监测, 知识规则, 多变量特征

Abstract: The present condition and its changing trend of wetland are very important to the making of policy upon the reclamation,exploitation,management and protection of wetland.In this paper,the coastal wetlands in the northern part of Jiangsu province were taken as study object and the technology about the extraction of wetland was explored by using multi-features and knowledge rules and multi-spectral Landsat 7 ETM+ images acquired on May 26,2002 and June 17,2007,in combination with the analysis upon the characteristics of wetlands and its presentation in remotely sensed imagery and the data of field investigation of the same period.At first,the extraction of wetland on the image acquired in 2002 was carried out based on knowledge rules,and then,the fusion of supervised and unsupervised classification was used to classify the image acquired in 2007.Both of the two methods obtained good results.At last,a change detection was performed on the two images using both comparison after classification and RB-NDVI-NDMI methods.The two results are in substantial agreement,but they have pros and cons.

Key words: coastal wetland of Jiangsu Province, extracting information, change detection, knowledge rules, multi-features

中图分类号: 

  • TP79
[1] 余国营.湿地研究的若干基本科学问题初论[J].地理科学进展,2001,20(2):177-183.
[2] YANG Li-min,XIAN G,KLAVER J M,et al.Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data[J].Photogramaetric Engineering and Remote Sensing,2003,69(10):1003-1010.
[3] SONG M,CIVCO D L,HURD J D.A competitive pixel-object approach for land cover classification[J].International Journal of Remote Sensing,2005,26(22):4981-4997.
[4] CABLK M E,MINOR T B.Detecting and discriminating impervious cover with high-resolution Ikonos data using principal component analysis and morphological operators[J].International Journal of Remote Sensing,2003,24(23):4627-4645.
[5] GAO Jay,CHEN Hui-fen,ZHANG Ying,et al.Knowledge-based approaches to accurate mapping of mangroves from satellite data[J].Photogramaetric Engineering and Remote Sensing,2004,70(11):1241-1248.
[6] CHUBEY M S,FRANKLIN S E,WULDER M A.Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters[J].Photogramaetric Engineering and Remote Sensing,2006,72(3):383-394.
[7] JENNING D,JARNAGIN S,EBERT D.A modeling approach for estimating watershed impervious surface area from national land-cover data 92[J].Photogramaetric Engineering and Remote Sensing,2004,70(11):1295-1307.
[8] 张志明,VERBEKE L P C,De CLERCQ E M,等.利用人工智能神经网络和DEM数据进行植被变化探测[J].科学通报,2007,52(S2):201-210.
[9] 李百寿,秦其明,许军强,等.遥感图像线性影纹理解专家系统设计与实现[J].测绘科学,2008,33(2):167-169.
[10] 翁代云,杨莉.人工智能技术在遥感图像分类中的应用[J].计算机仿真,2012,29(6):240-243.
[11] 孙俊杰,马大喜,任春颖,等.基于多时相环境卫星数据的南瓮河流域湿地信息提取方法研究[J].湿地科学,2013,11(1):60-67.
[12] 蔡德所,马祖陆,赵湘桂,等.桂林会仙岩溶湿地近40年演变的遥感监测[J].广西师范大学学报:自然科学版,2009,27(2):111-117.
[13] 王修信,秦丽梅,罗涟玲,等.提高城市TM图像分类精度的两种方法比较[J].广西师范大学学报:自然科学版,2009,27(4):19-22.
[14] 夏德深.现代图像处理技术与应用[M].南京:东南大学出版社,1997.
[15] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
[16] KELLY M,SHAARI D,GUO Qing-hua,et al.Acomparison of standard and hybrid classifier methods for mapping hardwood mortality in areas affected by sudden oak death[J].Photogramaetric Engineering and Remote Sensing,2004,70(11):1229-1239.
[17] CRIST E P,CICONE R C.A physically based transformation of Thematic Mapper data-the TM tasseled cap[J].IEEE Transaction on Geoscience and Remote Sensing,1984,22(3):256-263.
[18] COLLINS J B,WOODCOCK C E.An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data[J].Remote Sensing of Environment,1996,56(1):66-77.
[1] 李景文, 张紫萍, 郭伟立, 苏浩, 罗文彬. 基于分水岭与多尺度相结合的影像分割方法[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发