广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (2): 59-65.

• • 上一篇    下一篇

LNQD样本最近邻密度估计的相合性

崔永君, 杨善朝, 梁丹   

  1. 广西师范大学数学科学学院,广西桂林541004
  • 收稿日期:2012-01-17 出版日期:2012-06-20 发布日期:2018-12-03
  • 通讯作者: 杨善朝(1957—),男,广西玉林人,广西师范大学教授。E-mail:scyang@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11061007);广西自然科学基金资助项目(2011GXNSFA018133)

Consistency of Nearest Neighbor Estimation of Density Function for Linearly Negative Quadrant Dependent Samples

CUI Yong-jun, YANG Shan-chao, LIANG Dan   

  1. College of Mathematical Science,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2012-01-17 Online:2012-06-20 Published:2018-12-03

摘要: 本文在LNQD样本下研究最近邻密度估计的相合性,给出弱相合性、强相合性、一致强相合性以及它们的收敛速度的充分条件,同时研究了失效率函数估计的一致强相合性。

关键词: LNQD序列, 最近邻密度估计, 相合性

Abstract: The consistency of nearest density estimator for linearly negative quadrant dependent samples is discussed.Some sufficient conditionsfor week consistency,strong consistency,uniformly strong consistency and consistent rates are given.At the same time,the uniformly strong consistency of the hazard rate estimation is researched in this paper.

Key words: linearly negative quadrant dependent, nearest neighbor density estimator, consistency

中图分类号: 

  • O212.7
[1] LEHMANN E L.Some concepts of dependence[J].The Annals of Mathematical Statistics,1966,37(5):1137-1153.
[2] NEWMAN C M.Asymptotie independence and limit theorems for positively and negatively dependent random variables[C]//TONG Y L.Proceedings of theSymposium on Inequalities in Statisties and Probabilit.Hayward,CA:Institute ofMathematical Statistics,1984:127-140.
[3] LOFTSGAARDEN D O,QUESENBERRY C P.A nonparametric estimate of a multivariate density function[J].Annals of Mathematical Statistics,1965,36(3):1049-1051.
[4] 王学军.弱鞅和三类相依序列的概率不等式及极限定理[D].安徽:安徽大学,2010:61-78.
[5] WANG Jian-feng,ZHANG Li-xin.A Berry-Esseen theorem for weaklynegativelydependent random variables and its applications[J].Acta Math Hungar,2006,110(4):293-308.
[6] KO M H,CHOI Y K,CHOI Y S.Exponential probability inequality for linearly negative quadrant dependent random variables[J].Communications Korean Mathmatical Society,2007,22(1):137-143.
[7] KO Mi-hwa,RYU Dae-hee,KIM Tae-sun.Limiting behaviors of weighted sums for linearly negative quadrant dependent random variables[J].Taiwanese Journal of Mathematics,2007,11(2):511-512.
[8] MOORE D S,YACKEL J W.Large sample properties of nearest neighbordensity function estimators[M].Statistical Decision Theory and Related Topics.New York:Academic Press,1977.
[9] DEVROYE L P,WAGNER T J.The strong uniform consistency of nearestneighbor density function estimators[J].Ann Statist,1977,5(3):536-540.
[10] 陈希孺.最近邻密度估计的收敛速度[J].中国科学,1981(12):1419-1428.
[11] BOENTE G,FRAIMAN R.Consistency of a nonparametric estimate ofa density function for dependent variables[J].J Multivariate Analysis,1988,25(1):90-99.
[12] 柴根象.平稳序列最近邻密度估计的相合性[J].数学学报,1989,32(3):423-432.
[13] 杨善朝.NA样本最近邻密度估计的相合性[J].应用数学学报,2003,26(3):385-394.
[14] 刘妍岩,张艳丽.NQD样本最近邻密度估计的相合性[J].武汉大学学报:理学版,2006,52(1):13-16.
[15] 凌能祥,许昌满,彭小智.NQD样本下密度函数核估计的相合性[J].合肥工业大学学报:自然科学版,2008,31(2):287-290.
[1] 杨晓伟, 张军舰. 负二项回归模型的重对数律和强相合性[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 59-69.
[2] 张军舰, 杨秀芹. 最小加权KS估计[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 54-58.
[3] 杨善朝, 梁丹. φ混合样本下频率插值密度估计的强相合性[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发