|
广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (2): 35-41.
张浩奇1, 张浩敏1,2
ZHANG Hao-qi1, ZHANG Hao-min1,2
摘要: 本文针对线性随机微分方程,首先证明了强1.5阶隐式随机Taylor方法能无条件保持解析解几乎处处指数稳定性;其次证明了当0<p<2时,该数值算法能无条件保持解析解的p阶矩指数稳定性(即小阶矩指数稳定性),并给出了验证所得结论的数值算例。
中图分类号:
[1] CARLETTI M.Stochastic modeling of biological processes[D].Brisbane,Australia:University of Queensland,2008. [2] DARGATZ C,GEORGESCU V,HELD L.Stochastic modeling of the spatial spread of influenza in Germany[J].Australian Journal of Statistics,2006,35(1):5-20. [3] IACONO G,REYNOLDS A.A Lagrangian stochastic model for the dispersion and deposition of Brownian particles in the presence of a temperature gradient[J].Aerosol Science,2005,36:1238-1250. [4] STOIEA G.A stochastic delay financial model[J].Proceedings of the American Mathematical Society,2004,133(6):1837-1841. [5] 邓国和,黄艳华.双指数跳扩散模型的美式二值期权定价[J].高校应用数学学报,2011,26(1):21-36. [6] KLOEDEN P,PLATEN E.Numerical solution of stochastic differential equations[M].Berlin:Springer,1992. [7] ZEGHDANE R,ABBAOUI L,TOCINO A.Higher-order semi-implicit Taylorschemes for Ito^ stochastic differential equations[J].Journal of Computational and Applied Mathematics,2011,235(8):1009-1023. [8] OMAR M,ABOUL-HASSAN A,RABIA S.The composite Milstein methods forthe numerical solution of it?stocha-stic differential equations[J].Journal ofComputational and Applied Mathematics,2011,235(8):2277-2299. [9] SAITO Y,MITSUI T.Stability analysis of numerical schemes for stochastic differential equations[J].SLAM J Numer Anal,1996,33(6):2250-2267. [10] HIGHAM D.Mean-square and asymptotic stability of the stochastictheta method[J].SLAM J Numer Anal,2000,38(3):753-769. [11] MAO Xue-rong.Stochastic differential equations and their applications[M].Chichester:Horwood Pub,2007. [12] MAO Xue-rong.Exponential stability of stochastic differential equations[M].New York:Marcel Dekker Inc,1994. [13] MAO Xue-rong.Almost sure exponential stability for a class of stochasticdifferential equations with applications to stochastic flows[J].Stochastic Analysis and Applications,1993,11(1):77-95. [14] 彭国强,黄立宏.马尔科夫调配的随机微分方程的指数稳定性[J].广西师范大学学报:自然科学版,2005,23(2):44-47. [15] 邓国和.两参数Ito型随机微分方程强解稳定性的讨论[J].广西师范大学学报:自然科学版,1997,15(3):28-31. [16] HIGHAM D,MAO Xue-rong,YUAN Cheng-gui.Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations[J].SIAM J Numer Anal,2007,45(2):592-609. [17] WU F,MAO Xue-rong,SZPRUCH L.Almost sure exponential stability ofnumerical solutions for stochastic delay differential equations[J].Numerische Mathematics,2010,115(4):681-697. [18] PANG Su-lin,DENG Fei-qi,MAO Xue-rong.Almost sure and moment exponential stabilityof Euler-Maruyama discretizations for hybrid stochastic differential equations[J].Journal of Computational and Applied Mathematics,2008,213(1):127-141. [19] KLOEDEN P,PLATEN E.Higher-order implicit strong numerical schemes for stochastic differential equations[J].Journal of Statistical Physics,1992,66(1/2):283-314. |
[1] | 李海燕, 韦煜明, 彭华勤. 具有双疾病的随机SIRS传染病模型的灭绝性与持久性分析[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 144-155. |
[2] | 李淑一, 韦煜明, 彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 74-81. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |