广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (2): 45-49.

• • 上一篇    下一篇

两类(2+1)-维孤子方程的显式解

马云苓1,2, 耿献国1   

  1. 1.郑州大学数学系,河南郑州450052;
    2.商丘师范学院数学系,河南商丘476000
  • 收稿日期:2011-01-05 发布日期:2018-11-19
  • 通讯作者: 耿献国(1957—),男,河南安阳人,郑州大学教授,博导。E-mail:gengxg@public2.zz.ha.cn
  • 基金资助:
    国家自然科学基金资助项目(10871182,11074160);河南省自然科学基金资助项目(102300410190);河南省中青年骨干教师资助项目(092300410202)

Explicit Solutions of Two (2+1)-dimensional Soliton Equations

MA Yun-ling1,2, GENG Xian-guo1   

  1. 1.Department of Mathematics,Zhengzhou University,Zhengzhou Henan 450052,China;
    2.Department of Mathematics,Shangqiu Normal University,Shangqiu Henan 476000,China
  • Received:2011-01-05 Published:2018-11-19

摘要: 应用双线性方法,在(1+1)-维方程的帮助下,研究和讨论两类(2+1)-维孤子方程的显式解,给出了方程的单孤子解,双孤子解和N-孤子解,提供了求(2+1)-维孤子方程显式解的可行途径。

关键词: (2+1)-维孤子方程, 双线性方法, 双线性形式, 孤子解

Abstract: Using bilinear method and with the aid of the (1+1)-dimensional equation,explicit solutions of two (2+1)-dimensional soliton equations are discussed and studied.Some explicit solutions of these equations areobtained,including one-soliton solution,two-soliton solution and N-soliton solution.A systematic procedure is given in detail to solve N-solitonsolution of the (2+1)-dimensional soliton equation.

Key words: (2+1)-dimensional soliton equation, bilinear method, bilinear form, soliton solution

中图分类号: 

  • O175.29
[1] TODA M.Theory of nonlinear lattices,soliton state science[M].New York:Springer-Verlag,1981.
[2] NEWELL A C.Solitons in mathematics and physics[M].Philadelphia:SIAM,1985.
[3] ABLOWITZ M J,SEGUR H.Solitons and the inverse scattering transform[M].Philadelphia:SIAM,1981.
[4] FADDEEV L D,TAKHTAJAN I A.Hamiltonian methods in the theory of solitons[M].Berlin:Springer,1987.
[5] MATVEEV V B,SALLE A M.Darboux transformation and solitons[M].Berlin:Springer,1991.
[6] CAO Ce-wen.Nonlinearization of lax system for the AKNS hierarchy[J].Sci China A,1990,33:528-542.
[7] HIROTA R.The direct method in soliton theory[M].Cambridge:CambridgeUniversity Press,2004.
[8] MA Yun-ling,GENG Xian-guo.A coupled nonlinear schro¨dinger type equation and its explicit solutions[J].Chaos,Solitions and Fractals,2009,42:2949-2953.
[9] 马云苓,杜殿楼.CKdV-Bargmann系统的Lie-Poisson结构[J].广西师范大学学报:自然科学版,2005,23(3):38-40.
[10] MA Yun-ling.Algebra-geometric constructions of a (2+1)-dimensional discrete integrable model[J].J Phys A:Math Theor,2010,43:32-52.
[11] GENG Xian-guo,MA Yun-ling.N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation[J].PhysicsLetters A,2007,369:285-289.
[12] SU Ting,GENG Xian-guo,MA Yun-ling.Wronskian form of N-soliton solution or the (2+1)-dimensional breaking soliton equation[J].Chin Phys Lett,2007,24:305-307.
[13] CAO Ce-wen,WU Yong-tang,GENG Xian-guo.Relation between the Kadometsev-Petviashvili equation and the confocal involutive system[J].J Math Phys,1998,40:3948-3970.
[14] DU Dian-lou.Complex form,reduction and Lie-Poisson structurefor the nonlinearized spectral problem of the Heisenberg hierarchy[J].Physica A,2002,303:439-456.
[1] 周建军, 洪宝剑, 卢殿臣. 耦合Schrödinger-Boussinesq方程组的显式精确解[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 11-15.
[2] 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发