广西师范大学学报(自然科学版) ›› 2010, Vol. 28 ›› Issue (3): 122-125.

• • 上一篇    下一篇

基于Tri-training算法的中文短语翻译自由度计算

赵涛涛1, 洪宇1, 华震威2, 赵明明1, 姚建民1,2   

  1. 1.苏州大学计算机科学与技术学院,江苏苏州215006;
    2.苏州市科技局,江苏苏州215006
  • 收稿日期:2010-05-13 出版日期:2010-09-20 发布日期:2023-02-06
  • 通讯作者: 姚建民(1971—),男,河北乐亭人,苏州大学副教授,博士后。E-mail:jyao@suda.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(60970057);江苏省信息工程开放实验室项目资助

Freedom Computation Based on Tri-training in Chinese Phrase Translation

ZHAO Tao-tao1, HONG Yu1, HUA Zhen-wei2, ZHAO Ming-ming1, YAO Jian-min1,2   

  1. 1. School of Computer Science and Technology,Soochow University,Suzhou Jiangsu 215006,China;
    2. Office of Science and Technology of Suzhou,Suzhou Jiangsu 215006,China
  • Received:2010-05-13 Online:2010-09-20 Published:2023-02-06

摘要: 由于Tri-training半监督学习方法对分类算法和样本类型要求比较宽松,并且算法运行速度较快,故采用其进行中文短语的翻译自由度的计算,实验结果表明,Tri-training半监督学习方法能够较大程度地提高短语翻译自由度计算的准确性,对翻译自由度计算有较好的学习效果。

关键词: 翻译自由度, Tri-training, 半监督学习

Abstract: The Tri-training,a semi-supervised learning method,has few restrictions on the classification algorithms and the training data.Moreover,it runs faster than other methods,so it is applied to compute thefreedom in Chinese phrase translation.The result shows that Tri-training can improve the accuracy of the computation of the freedom and have high learning effectiveness.

Key words: freedom of translation, Tri-training, semi-supervised learning

中图分类号: 

  • TP391
[1] NAGAO M.A framework of a mechanical translation between Japaneseand English by analogy principle[C]//ELITHORN A,BANERJI R.Proceedings of the International NATO Symposium on Artificial and Human Intelligence.NATO Publications.New York,NY:Elsevier North-Holland Inc,1984:173-180.
[2] IMAMURA K,SUMITA E,MATSUMOTO Y.Automatic construction of machine translation knowledge using translation literalness[C]//Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics,Vol 1.Morristown,NJ:Association for Computational Linguistics,2003:155-162.
[3] GUO Lei,ZHOU Mei-ling,YAO Jian-min,et al.A supervised method for transliterated person name identification[C]//Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security.Washington DC:IEEE Computer Society,2009:117-120.
[4] ZHOU Zhi-hua,LI Ming.Tri-training:exploiting unlabeled datausing three classifiers[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(11):1529-1541.
[5] 朱凤梅,张道强.一种基于半监督降维的聚类算法[J].广西师范大学学报:自然科学版,2008,26(3):185.
[6] SUN Jun,YAO Jian-min,ZHANG Jing,et al.Web mining ofOOV translations[J].Journal of Information and Computational Science,2008,5(5):2057-2064.
[7] BLUM A,MITCHELL T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory.New York,NY:ACM,1998:92-100.
[8] GOLDMAN S A,ZHOU Yan.Enhancing supervised learning with unlabeleddata[C]//Proceedings of the 17th International Conference on Machine Learning.San Francisco,CA:Morgan Kaufmann Publishers Inc,2000:327-334.
[9] 周志华.半监督学习中的协同训练风范[C]//机器学习及其应用.北京:清华大学出版社,2007:259-275.
[10] DIETTERICH T G.Ensemble methods in machine learning[C]//Proceedings ofthe 1st International Workshop on Multiple Classifier Systems,LNCS 1857.London:Springer-Verlag,2000:1-15.
[11] BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
[1] 陆广泉, 谢扬才, 刘星, 张师超. 一种基于KNN的半监督分类改进算法[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发