2025年04月05日 星期六

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (2): 168-178.doi: 10.16088/j.issn.1001-6600.2024040204

• 数学与统计学 • 上一篇    下一篇

网络攻击下具有Markov切换拓扑的多智能体系统的一致性

高钰博1, 叶钊显2, 黄帅1, 周霞1,3,4*, 成军5   

  1. 1.桂林电子科技大学 数学与计算科学学院, 广西 桂林 541004;
    2.桂林电子科技大学 计算机与信息安全学院, 广西 桂林 541004;
    3.桂林电子科技大学 广西高校数据分析与计算重点实验室, 广西 桂林 541004;
    4.广西应用数学中心(桂林电子科技大学), 广西 桂林 541004;
    5.广西师范大学 数学与统计学院, 广西 桂林 541006
  • 收稿日期:2024-04-02 出版日期:2025-03-05 发布日期:2025-04-02
  • 通讯作者: 周霞(1981—), 女, 陕西商洛人, 桂林电子科技大学教授, 博士。 E-mail: xiazhou201612@guet.edu.cn
  • 基金资助:
    国家级大学生创新训练计划项目(202210595044); 国家自然科学基金(12161024); 广西自然科学基金(2021GXNSFAA196045)

Consensus of Multi-agent Systems with Markov Switching Topology under Cyber-Attacks

GAO Yubo1, YE Zhaoxian2, HUANG Shuai1, ZHOU Xia1,3,4*, CHENG Jun5   

  1. 1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    3. Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    4. Center for Applied Mathematics of Guangxi (Guilin University of Electronic Technology), Guilin Guangxi 541004, China;
    5. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-04-02 Online:2025-03-05 Published:2025-04-02

摘要: 本文研究非线性多智能体系统在遭受欺骗攻击或重放攻击,并且通信拓扑为Markov切换拓扑时的领导-跟随一致性问题。引入Bernoulli随机变量描述系统遭受欺骗攻击或重放攻击的随机发生。网络攻击导致多智能体系统的通讯拓扑发生随机改变,将其建模为Markov切换拓扑。基于稳定性理论、图论、矩阵理论,利用随机分析方法、Lyapunov方法、无穷小算法等,获得系统实现一致性的充分条件,并给出数值仿真实例,验证结果的正确性和方法的有效性。

关键词: 多智能体系统, 欺骗攻击, 重放攻击, Markov切换拓扑, 领导-跟随一致性

Abstract: This paper studies the leader-following consensus problem of nonlinear multi-agent systems under deception attacks of replay attacks, with Markov switching topologies. The Bernoulli random variable is introduced to describe the random occurrence of deception attacks or replay attacks on the system. The communication topologies of multi-agent system are randomly changed due to cyber-attacks, which are modeled as Markov switching topology. Based on stability theory, graph theory, and matrix theory, the sufficient conditions for the consensus of the system are obtained by random analysis method, Lyapunov method, infinitesimal algorithm and so on. The correctness of the results and the effectiveness of the methods are verified by numerical example.

Key words: multi-agent systems, deception attacks, replay attacks, Markov switching topology, leader-following consensus

中图分类号:  O175.1; O231.3

[1] 谢光强, 章云,李杨,等.基于Krause多智能体一致性模型的研究[J].广西师范大学学报(自然科学版),2013,31(3):106-113.DOI: 10.3969/j.issn.1001-6600.2013.03.017.
[2] DAEICHIAN A, HAGHANI A. Fuzzy Q-learning-based multi-agent system for intelligent traffic control by a game theory approach[J]. Arabian Journal for Science and Engineering, 2018, 43(6): 3241-3247. DOI: 10.1007/s13369-017-3018-9.
[3] BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790. DOI: 10.1109/87.960341.
[4] KUMAR NUNNA H S V S, DOOLLA S. Multiagent-based distributed-energy-resource management for intelligent microgrids[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1678-1687. DOI: 10.1109/TIE.2012.2193857.
[5] YE D, ZHANG T Y, GUO G. Stochastic coding detection scheme in cyber-physical systems against replay attack[J]. Information Sciences, 2019, 481: 432-444. DOI: 10.1016/j.ins.2018.12.091.
[6] ZHOU X, CHEN L L, CAO J D, et al. Asynchronous filtering of MSRSNSs with the event-triggered try-once-discard protocol and deception attacks[J]. ISA Transactions, 2022, 131: 210-221. DOI: 10.1016/j.isatra.2022.04.030.
[7] ZHOU X, HUANG C Y, CAO J D, et al. Consensus of NMASs with MSTs subjected to DoS attacks under event-triggered control[J]. Filomat, 2023, 37(17): 5567-5580. DOI: 10.2298/FIL2317567Z.
[8] ZHOU X, HUANG C Y, LI P, et al. Leader-following identical consensus for Markov jump nonlinear multi-agent systems subjected to attacks with impulse[J]. Nonlinear Analysis: Modelling and Control, 2023, 28(5): 995-1019. DOI: 10.15388/namc.2023.28.33003.
[9] ZHOU X, XI M X, LIU W B, et al. Delayed consensus in mean-square of mass under markov switching topologies and brown noise[J]. Journal of Applied Analysis and Computation, 2024, 14(1): 543-559. DOI: 10.11948/20230307.
[10] YOU K Y, LI Z K, XIE L H. Consensus condition for linear multi-agent systems over randomly switching topologies[J]. Automatica, 2013, 49(10): 3125-3132. DOI: 10.1016/j.automatica.2013.07.024.
[11] WANG X, YANG H L, ZHONG S M. Improved results on consensus of nonlinear MASs with nonhomogeneous Markov switching topologies and DoS cyber attacks[J]. Journal of the Franklin Institute, 2021, 358(14): 7237-7253. DOI: 10.1016/j.jfranklin.2021.07.044.
[12] CHENG J, PARK J H, YAN H C, et al. An event-triggered round-robin protocol to dynamic output feedback control for nonhomogeneous Markov switching systems[J]. Automatica, 2022, 145: 110525. DOI: 10.1016/j.automatica.2022.110525.
[13] CHENG J, WU Y Y, WU Z G, et al. Nonstationary filtering for fuzzy Markov switching affine systems with quantization effects and deception attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 2022, 52(10): 6545-6554. DOI: 10.1109/TSMC.2022.3147228.
[14] CHENG J, PARK J H, WU Z G. Finite-Time control of Markov jump Lur’e systems with singular perturbations[J]. IEEE Transactions on Automatic Control, 2023, 68(11): 6804-6811. DOI: 10.1109/TAC.2023.3238296.
[15] 杨珺博,马忠军,李科赞.双层网络上多智能体系统的部分分量一致性[J].控制理论与应用,2023,40(8):1377-1383.DOI: 10.7641/CTA.2023.20561.
[16] 刘雪雪,李丰兵,马忠军.领导-跟随多智能体系统在自适应牵制控制下的部分分量一致性[J].桂林电子科技大学学报,2021,41(3):247-252.DOI: 10.3969/j.issn.1673-808X.2021.03.013.
[17] 马忠军,甘晓亮,蒋贵荣.具有时滞和时变系数的离散多智能体系统的一致性[J].控制与决策,2016,31(10):1785-1790.DOI: 10.13195/j.kzyjc.2015.1193.
[18] 呼文军,马忠军,马梅.领导—跟随多智能体系统在分布式自适应控制下的滞后一致性[J].广西师范大学学报(自然科学版),2018,36(1):70-75.DOI: 10.16088/j.issn.1001-6600.2018.01.009.
[19] WANG Y, MA Z J, ZHENG S, et al.Pinning control of lag-consensus for second-order nonlinear multiagent systems[J]. IEEE Transactions on Cybernetics, 2016, 47(8): 2203-2211. DOI: 10.1109/TCYB.2016.2591518.
[20] MA Z J,WANG Y, LI X M. Cluster-delay consensus in first-order multi-agent systems with nonlinear dynamics[J]. Nonlinear Dynamics, 2016, 83: 1303-1310. DOI: 10.1007/s11071-015-2403-8.
[21] 吴彬彬,马忠军,王毅.领导-跟随多智能体系统的部分分量一致性[J].物理学报,2017,66(6):060201.DOI: 10.7498/aps.66.060201.
[22] 于俊生,马忠军,李科赞.事件触发控制下多智能体系统的部分分量一致性[J].广西师范大学学报(自然科学版),2023,41(4):149-157.DOI: 10.16088/j.issn.1001-6600.2022090401.
[23] 谢媛艳,王毅,马忠军.领导-跟随多智能体系统的滞后一致性[J].物理学报,2014,63(4):040202.DOI: 10.7498/aps.63.040202.
[1] 隆紫庭, 马忠军, 李科赞. 多智能体系统的实用-分量一致性[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 139-146.
[2] 于俊生, 马忠军, 李科赞. 事件触发控制下多智能体系统的部分分量一致性[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 149-157.
[3] 呼文军,马忠军,马梅. 领导—跟随多智能体系统在分布式自适应控制下的滞后一致性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 70-75.
[4] 谢光强, 章云, 李杨, 曾启杰. 基于Krause多智能体一致性模型的研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 106-113.
Viewed
Full text
0
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 0


Abstract
4
Just accepted Online first Issue
0 0 4
  From Others local
  Times 3 1
  Rate 75% 25%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发