2025年04月12日 星期六

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (2): 179-192.doi: 10.16088/j.issn.1001-6600.2024030402

• 数学与统计学 • 上一篇    下一篇

空间自相关性异质特征的局部极大似然估计及在手足口病防护中的应用

杨晓兰, 张辉国*, 胡锡健   

  1. 新疆大学 数学与系统科学学院, 新疆 乌鲁木齐 830017
  • 收稿日期:2024-03-04 修回日期:2024-05-16 出版日期:2025-03-05 发布日期:2025-04-02
  • 通讯作者: 张辉国(1978—), 男, 山东莱西人, 新疆大学副教授。E-mail: zhanghg@xju.edu.cn
  • 基金资助:
    国家自然科学基金(11961065); 新疆自然科学基金(2023D01C01); 教育部人文社会科学研究规划基金(19YJA910007)

Local Maximum Likelihood Estimation of Heterogeneous Features with Spatial Autocorrelation and Its Application in Protection of Hand-Foot-Mouth Disease

YANG Xiaolan, ZHANG Huiguo*, HU Xijian   

  1. School of Mathematics and Systems Sciences, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2024-03-04 Revised:2024-05-16 Online:2025-03-05 Published:2025-04-02

摘要: 空间自回归模型广泛用于空间数据的相关性分析,它将空间自回归系数设定为全局常数,对空间自相关性的同质特征进行建模,但是无法分析研究区域内局部异质的空间自相关特征。本文研究一类异质性空间自回归变系数模型,将模型中的空间自相关回归系数设为随地理位置发生变化的变系数函数,实现同时对空间自相关性的局部异质特征和非平稳回归关系建模,提出异质性空间自回归变系数模型的局部常数极大似然和局部线性极大似然估计方法。进行数值模拟,结果表明:局部线性极大似然估计和局部常数极大似然估计方法在有限样本下具有一致性和有效性,本文所提出的模型和估计方法具有良好表现。利用所研究的模型和提出的估计方法对2018年我国手足口病发病率与影响因素进行分析,发现各省(自治区、直辖市)的局部空间自相关性呈现西部偏高,中部和东部偏低的趋势,存在一定差异性,各影响因素对手足口病发病率的影响程度也随空间位置的变化而有所不同。

关键词: 异质性空间自回归变系数模型, 空间自相关异质性, 局部常数极大似然, 局部线性极大似然, 手足口病

Abstract: Spatial autoregressive models are widely used for correlation analysis of spatial data, setting the spatial autoregression coefficient as a global constant to model the homogeneous features of spatial autocorrelation, but cannot be used to analyze the locally heterogeneous spatial autocorrelation features within the study area. In this paper, a class of heterogeneous spatial autoregressive varying coefficient models is studied, and the local constant maximum likelihood and local linear maximum likelihood estimation methods of the heterogeneous spatial autoregressive varying coefficient models are proposed by setting the spatial autocorrelation regression coefficient in the models as varying coefficient function that changes with geographical location to realize the modeling of local heterogeneous features and nonstationary regression relations of spatial autocorrelation at the same time. Through numerical simulation, the results show that the local linear maximum likelihood estimation and local constant maximum likelihood estimation methods have consistency and effectiveness under finite samples, and the model and estimation method proposed in this paper have good performance. The proposed models and methods are used to analyze hand-foot-mouth disease (HFMD) incidence and influencing factors based on data within the territory of China in 2018. It is found that the local spatial autocorrelation of each province shows a trend of being higher in the west and lower in the central eastern regions. The extent of the impact of each influencing factor on the incidence of HFMD also varies with spatial location.

Key words: heterogeneous spatial varying coefficient autoregressive model, spatial autocorrelation heterogeneity, local constant maximum likelihood, local linear maximum likelihood, hand-foot-mouth disease

中图分类号:  O212.1

[1] CLIFF A D, ORD J K. Spatial autocorrelation[M]. London: Pion, 1973.
[2] KELEJIAN H H, PRUCHA I R, YUZEFOVICH Y. Instrumental variable estimation of a spatial autoregressive model with autoregressive disturbances: large and small sample results[M] // LESAGE J P, KELLEY PACE R. Spatial and Spatiotemporal Econometrics. Leeds: Emerald Group Publishing Limited, 2004: 163-198. DOI: 10.1016/S0731-9053(04)18005-5.
[3] LEE L F. Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances[J]. Econometric Reviews, 2003, 22(4): 307-335. DOI: 10.1081/ETC-120025891.
[4] LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[J]. Econometrica, 2004, 72(6): 1899-1925. DOI: 10.1111/j.1468-0262.2004.00558.x.
[5] 方丽婷.空间滞后模型的贝叶斯估计[J].统计研究,2014,31(5):102-106.DOI: 10.3969/j.issn.1002-4565.2014.05.015.
[6] QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83(1): 1-25. DOI: 10.1007/s13171-019-00166-3.
[7] 秦永松,雷庆祝.空间计量经济模型的经验似然研究进展[J].广西师范大学学报(自然科学版),2022,40(5):138-149.DOI: 10.16088/j.issn.1001-6600.2022012002.
[8] 曾庆樊,秦永松,黎玉芳.一类空间面板数据模型的经验似然推断[J].广西师范大学学报(自然科学版),2022,40(1):30-42.DOI: 10.16088/j.issn.1001-6600.2021060918.
[9] 候瑞环,王沁,李裕奇.含辅助信息的最小非参似然比估计和检验[J].四川师范大学学报(自然科学版),2016,39(1):59-64.DOI: 10.3969/j.issn.1001-8395.2016.01.010.
[10] 魏传华,胡晶,吴喜之.空间自相关地理加权回归模型的估计[J].数学的实践与认识,2010,40(22):126-134.
[11] SUN Y, YAN H J, ZHANG W Y, et al. A semiparametric spatial dynamic model[J]. The Annals of Statistics, 2014, 42(2): 700-727. DOI: 10.1214/13-A051201.
[12] WEI H J, YAN S. Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients[J]. Spatial Economic Analysis, 2017, 12(1): 113-128. DOI: 10.1080/17421772.2017.1250940.
[13] SU L J. Semiparametric GMM estimation of spatial autoregressive models[J]. Journal of Econometrics, 2012, 167(2): 543-560. DOI: 10.1016/j.jeconom.2011.09.034.
[14] CASETTI E. Generating models by the expansion method: applications to geographical research[J]. Geographical Analysis, 1972, 4(1): 81-91. DOI: 10.1111/j.1538-4632.1972.tb00458.x.
[15] ZHANG C S, LUO L, XU W L, et al. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland[J]. Science of the Total Environment, 2008, 398(1/2/3): 212-221. DOI: 10.1016/j.scitotenv.2008.03.011.
[16] XIE Z X, YAN J. Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach[J]. Journal of Transport Geography, 2013, 31: 64-71. DOI: 10.1016/j.jtrangeo.2013.05.009.
[17] HE W, WANG L Y, YU W J, et al. Prevalence and spatial distribution patterns of human echinococcosis at the township level in Sichuan Province, China[J]. Infectious Diseases of Poverty, 2021, 10(1): 82. DOI: 10.1186/s40249-021-00862-z.
[18] LIU Q Y, WU Y H, ZHOU Y Z, et al. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks[J]. Environmental Pollution, 2021, 284: 117191. DOI: 10.1016/j.envpol.2021.117191.
[19] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Spatial nonstationarity and autoregressive models[J]. Environment and Planning A: Economy and Space, 1998, 30(6): 957-973. DOI: 10.1068/a300957.
[20] GENIAUX G, MARTINETTI D. A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models[J]. Regional Science and Urban Economics, 2018, 72: 74-85. DOI: 10.1016/j.regsciurbeco.2017.04.001.
[21] MEI C L, CHEN F. Detection of spatial heterogeneity based on spatial autoregressive varying coefficient models[J]. Spatial Statistics, 2022, 51: 100666. DOI: 10.1016/j.spasta.2022.100666.
[22] 魏传华,王韶郡,苏宇楠.空间变系数地理加权自回归模型的局部GMM估计[J].统计与信息论坛,2022,37(11):3-13.DOI: 10.3969/j.issn.1007-3116.2022.11.001.
[23] CHADSUTHI S, WICHAPENG S. The modelling of hand, foot, and mouth disease in contaminated environments in Bangkok, Thailand[J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 5168931. DOI: 10.1155/2018/5168931.
[1] 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129.
[2] 唐洁, 秦永松. 含空间自相关误差的空间自回归模型的调整经验似然推断[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 100-114.
[3] 蔡学峰, 李天俊, 黄磊. 基于非参检验及多元回归分析的不同医保医疗费用自付比例研究——以成都市某医院Ⅱ型糖尿病患者为例[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 115-123.
[4] 张治飞, 段谦, 刘乃嘉, 黄磊. 基于Jackknife互信息的高维非线性回归模型研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 43-56.
[5] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81.
[6] 刘宇, 周稳, 李霓. 复发事件数据在含治愈个体的半参数比率模型下的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 139-149.
[7] 朱恩文, 朱安麒, 王洁丹, 刘玉娇. 基于EEMD-GA-BP模型的风电功率短期预测研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 166-174.
[8] 颜海波, 邓罡, 姜云卢. 基于MRCD估计的多元线性回归模型的稳健估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 175-186.
[9] 梁鑫, 陈小玲, 张兴发, 李元. 一类带有GARCH类误差项的自回归滑动平均模型[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 195-205.
[10] 田镇滔, 张军舰. 基于分位数方法的超高维删失数据的特征筛选[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 99-111.
[11] 谢冬林, 邓国和. 随机利率跳扩散模型下幂型乘积远期生效期权定价[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 158-172.
[12] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68-78.
[13] 林松, 尹长明. 两阶段Logit模型的惩罚广义估计方程估计的渐近性质[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 126-130.
[14] 何琳,杨善朝. α-混合随机域边缘频率插值的渐近方差性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 88-94.
[15] 雷庆祝, 秦永松, 罗敏. 强混合样本下刻度指数分布族参数的经验贝叶斯估计和检验[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 63-74.
Viewed
Full text
1
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 1

  From local
  Times 1
  Rate 100%

Abstract
13
Just accepted Online first Issue
0 0 13
  From Others local
  Times 12 1
  Rate 92% 8%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发