广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 152-158.doi: 10.16088/j.issn.1001-6600.2023071202

• • 上一篇    下一篇

三苯基膦/NBS协同促进酮肟贝克曼重排反应——酰胺类化合物的合成研究

谢建武*, 叶跃峰, 谢玄升   

  1. 陕西科技大学 生物与医药学院, 陕西 西安 710021
  • 收稿日期:2023-07-12 修回日期:2023-10-13 发布日期:2024-04-22
  • 通讯作者: 谢建武(1978—), 男, 广西博白人, 陕西科技大学教授, 博士。 E-mail: xiejw@sust.edu.cn
  • 基金资助:
    陕西省“科学家+工程师”队伍建设项目(2024QCY-KXJ-066)

Triphenylphosphine/NBS-Catalyzed Beckmann Rearrangement of Ketoximes into Amides

XIE Jianwu*, YE Yuefeng, XIE Xuansheng   

  1. School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an Shaanxi 710021, China
  • Received:2023-07-12 Revised:2023-10-13 Published:2024-04-22

摘要: Beckmann重排反应在有机合成反应中具有十分重要的价值,但由于苛刻的反应条件、催化剂的难制备和毒性等,严重制约该反应的应用。本文提供一种催化酮肟Beckmann重排反应的新型催化体系,以Ph3P/NBS(N-溴代丁二酰亚胺,NBS)协同催化酮肟发生Beckmann重排合成一系列酰胺,对制备得到的化合物进行表征和测试,并给出可能的反应机理。实验结果表明,本文方法能高效、高收率地合成一系列酰胺(产率76%~99%),制备得到的4-苯基二苯甲酮类酰胺和4-硝基二苯甲酮类酰胺有较大的Stoke’s位移(分别是118和151 nm),说明通过调节芳基上的取代基,可以有效地调整该类化合物分子极性方向,有利于荧光增大分子内的电荷转移效应,增大Stoke’s位移,为该类化合物在荧光探针方面的应用奠定了理论基础。本文方法具有腐蚀性低、反应产率高、可以放大、反应时间短以及后处理简单等优点,为Beckmann重排反应的推广应用提供了理论依据。

关键词: 酰胺, Beckmann重排, N-溴代丁二酰亚胺, 酮肟, 三苯基磷

Abstract: A Beckmann rearrangement of ketoximes reaction using triphenylphosphine/NBS as an effective catalyst in acetonitrile is developed. The results indicate that conversion of oximes to amides can reach excellent yields (76%-99% yield) under mild reaction conditions. There are many merits about this method, such as low corrosion, high yields, large-scale preparation, environmental friendliness, simple work-up procedure, and short reaction time. The reaction mechanism is also proposed. The absorption and emission spectrum characteristics of the compounds are also examined. The N-phenyl-[1,1′-biphenyl]-4-carboxamide and 4-nitro-N-phenylbenzamide have a large Stokes shifts of 118, 151 nm, respectively. The results indicate that altering the substitution of aromatic group can be an effective means to regulate the Stoke’s shift.

Key words: amide, Beckman rearrangement, N-bromosuccinimide, ketoximes, triphenylphosphine

中图分类号:  TQ453.2

[1] SMITH M B, MARCH J. March’s advanced organic chemistry: reactions, mechanisms and structures[M]. 5th ed. New York: Wiley, 2001: 1415.
[2] WESSERMEL K, ARPE H J. Industrial organic chemistry[M]. 4th ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 239.
[3] PARK S, CHOI Y A, HAN H, et al. Rh-catalyzed one-pot and practical transformation of aldoximes to amides[J]. Chemical Communications, 2003, 39(15): 1936-1937. DOI: 10.1039/B305268K.
[4] PENG X Y, LIU Y T, SHEN Q. et al. Bodipy photocatalyzed Beckmann rearrangement and hydrolysis of oximes under visible light[J]. Journal of Organic Chemistry, 2022, 87(18): 11958-11967. DOI: 10.1021/acs.joc.2c00813.
[5] VASCHETTO E G, CASUSCELLI S G, EIMER G A. Improvements in the Beckmann rearrangement process by using highly selective mesoporous catalysts[J]. Microporous and Mesoporous Materials, 2016, 221: 175-181. DOI: 10.1016/j.micromeso.2015.09.038.
[6] LI Q, YAN L Y, XIA D. et al. Organic chemistry[M]. [s.l.]∶[s.n.], 2011:2034.
[7] CAZZADOR G, MANZATO L, RONCHIN L, et al. A new sustainable multistep catalytic process from benzene to caprolactam: amination, hydroximation and Beckmann rearrangement promoted and catalyzed by trifluoroacetic acid[J]. Catalysis Letters, 2023, 153(9): 2763-2774. DOI: 10.1007/s10562-022-04207-9.
[8] 周云, 卢建国, 朱明乔. 环己酮肟贝克曼重排制己内酰胺绿色催化研究进展[J]. 合成纤维工业, 2015, 38(2): 51-56. DOI: 10.3969/j.issn.1001-0041.2015.02.013.
[9] DU C C, WANG Y B, DENG J. et al. Organocatalyzed Beckmann rearrangement of cyclohexanone oxime by trifluoroacetic anhydride in microreactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8714-8723. DOI: 10.1021/acs.iecr.2c01078.
[10] 孙超, 姚武冰, 张斌, 等. 锌催化的贝克曼重排反应[J]. 有机化学, 2018, 38(2): 457-463. DOI: 10.6023/cjoc201708018.
[11] 王珍妮, 赵滢, 陈祥铤, 等. SnCl2催化二苯酮肟贝克曼重排反应研究[J]. 化学研究与应用, 2018, 30(4): 653-656. DOI: 10.3969/j.issn.1004-1656.2018.04.034.
[12] 冯一格, 叶浙高, 郝仕油. 氢键驱动的二苯甲酮肟Beckmann重排反应研究[J]. 有机化学, 2019, 39(4): 1122-1128. DOI: 10.6023/cioc201809001.
[13] 范昕, 易容, 王芳, 等. 铜催化醛肟脱水/贝克曼重排选择性可切换反应[J]. 有机化学, 2018, 38(10): 2736-2748. DOI: 10.6023/cjoc201805044.
[14] MAEGAWA T, OISHI R, MAEKAWA R. et al. The reaction of ketoximes with hypervalent iodine reagents: Beckmann rearrangement and hydrolysis to ketones[J]. Synethesis, 2022, 54(18): 4095-4103. DOI: 10.1055/a-1835-2188.
[15] 张健, 刘园园, 冯维春, 等. 贝克曼重排的研究新进展[J]. 有机化学, 2019, 39(4): 961-973. DOI: 10.6023/cjoc201809031.
[16] MAHAJAN S, SHARMA B, KAPOOR K K. A solvent-free one step conversion of ketones to amides via Beckmann rearrangement catalyzed by FeCl3·6H2O in presence of hydroxylamine hydrochloride[J]. Tetrahedren Letters, 2015, 56(14): 1915-1918. DOI: 10.1016/j.tetlet.2015.02.110.
[17] REN C X, WANG Z Y, GAO Q W. et al. Novel bronsted acidic ionic liquids as high efficiency catalysts for liquid-phase Beckmann rearrangement[J]. Catalysts, 2023, 13(6): 974-978. DOI: 10.3390/catal13060978.
[18] WANG K W, WANG F M, ZHAI Y. et al. Application of zeolite in Beckmann rearrangement of cyclohexanone oxime[J]. Molecular Catalysis, 2023, 535:112881. DOI: 10.1016/j.mcat.2022.112881.
[19] JIN X, PENG R S, TONG W. et al. Investigation of the active centers and structural modifications for TS-1 in catalyzing the Beckmann rearrangement[J]. Catalysis Today, 2022, 405/406: 193-202. DOI: 10.1016/j.cattod.2022.05.033.
[20] XU F, WANG N G, TIAN Y P. et al. Ph3P/I2-catalyzed Beckmann rearrangement of ketoximes into amides[J]. Synthetic Communications, 2012, 42(23): 3532-3539. DOI: 10.1080/00397911.2011.585270.
[21] GANGULY N C, MONDAL P. Efficient iodine-mediated Beckmann rearrangement of ketoximes to amides under mild neutral conditions[J]. Synthesis, 2010, 42(21): 3705-3709. DOI: 10.1055/s-0030-1258217.
[22] PONZO V L, BIANCHI D A, KAUFMAN T S. Carbonyl transposition of α-hydroxyamidals mediated by triphenylphosphine-iodine: a new entry to tetrahydroisoquinolin-4-ones[J]. Tetrahedron Letters, 1998, 39(21): 3409-3412. DOI: 10.1016/S0040-4039(98)00535-8.
[23] 赵春阳, 董书达, 尹钰芸, 等. 超声波辅助下PPh3-I2共催化的室温Beckmann重排反应[J]. 化学试剂, 2018, 40(5): 502-506. DOI: 10.13822/j.cnki.hxsj.2018.05.024.
[24] BARRILLIER D, LEVILLAIN J, VAZEUX M. Halides-based electrophiles mediated epoxide ring-opening reactions of α,β-epoxysulfoxides in C6-series: deoxygenation versus dehydration and an overall 1,2-keto transposition[J]. Tetrahedron, 1994, 50(18): 5413-5424. DOI: 10.1016/S0040-4020(01)80698-0.
[25] BOLITT V, MIOSKOWSKI C, LEE S G. Direct preparation of 2-deoxy-D-glucopyranosides from glucals without Ferrier rearrangement[J]. Journal of Organic Chemistry, 1990, 55(23): 5812-5813. DOI: 10.1002/chin.199116264.
[26] TATAROGˇLU M, SUNGUR F A. Mechanistic insights into the challenges of organocatalytic Beckmann rearrangement reactions[J]. Organic & Biomolecular Chemistry, 2023, 21(6): 1254-1263. DOI: 10.1039/d2ob01641a.
[27] AN N, TIAN B X, PI H J. et al. Mechanistic insight into self-propagation of organo-mediated Beckmann rearrangement: a combined experimental and computational study[J]. Journal of Organic Chemistry, 2013, 78(9): 4297-4302. DOI: 10.1021/jo400278c.
[28] XIE F K, DU C, PANG Y D, et al. Lewis acid-assisted N-fluorobenzenesulfonimide-based electrophilic fluorine catalysis in Beckmann rearrangement[J]. Tetrahedron Letters, 2016, 57(51): 5820-5824. DOI: 10.1016/j.tetlet.2016.11.054.
[29] WANG Y, ZHU D P, TANG L. et al. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst[J]. Angewandte Chemie International Edition, 2011, 50(38): 8917-8921. DOI: 10.1002/anie.201102374.
[30] 姚武冰, 虞姜姜, 黄相韵, 等. 钴催化的高效贝克曼重排反应[J]. 高等学校化学学报, 2018, 39(5): 926-933. DOI: 10.7503/cjcu20170560.
[1] 郭利辉, 田一方, 梅晓芸, 张新爱, 陈冠华. 苯唑西林分子印迹聚合物的制备及其分子识别特性研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 86-92.
[2] 邱建华, 张延武, 张亚涛, 张浩勤, 刘金盾. 表面化学法改性醋酸纤维素微滤膜[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 65-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁静静, 郑宇钊, 徐晨枫, 殷婷婕. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1 -8 .
[2] 涂广升, 孔咏骏, 宋哲超, 叶康. 密文域可逆信息隐藏研究进展及技术难点分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 1 -15 .
[3] 杨杨阳, 朱震霆, 杨翠萍, 李世豪, 张舒, 范秀磊, 万蕾. 基于文献计量学分析的剩余污泥厌氧消化预处理研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 16 -29 .
[4] 许伦辉, 李金龙, 李若南, 陈俊宇. 基于动态生成对抗网络的路网缺失交通数据修复[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 30 -40 .
[5] 杨海, 谢亚琴. 基于Floyd算法的5G基站区域储能分配策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 41 -54 .
[6] 闫文文, 文中, 王爽, 李国祥, 王博宇, 吴艺. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55 -68 .
[7] 甘友春, 王灿, 贺旭辉, 张羽, 张雪菲, 王帆, 喻亚洲. 考虑光热电站和柔性负荷的电氢热综合能源系统联合优化运行[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 69 -83 .
[8] 王旭阳, 王常瑞, 张金峰, 邢梦怡. 基于跨模态交叉注意力网络的多模态情感分析方法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 84 -93 .
[9] 王卫舵, 王以松, 杨磊. 云资源调度的回答集程序描述性求解[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 94 -104 .
[10] 余谦, 陈庆锋, 何乃旭, 韩宗钊, 卢家辉. 基于矩阵运算加速的改进社区发现遗传算法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 105 -119 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发