广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 131-139.doi: 10.16088/j.issn.1001-6600.2023050802

• • 上一篇    下一篇

上斜坡双足机器人行走的稳定性分析

仝丽妍1, 蒋贵荣1*, 江波2, 龙腾飞2   

  1. 1.桂林电子科技大学 数学与计算科学学院, 广西 桂林 541004;
    2.桂林电子科技大学 电子工程与自动化学院, 广西 桂林 541004
  • 收稿日期:2023-05-08 修回日期:2023-06-29 发布日期:2024-04-22
  • 通讯作者: 蒋贵荣(1968—), 男, 湖南永州人, 桂林电子科技大学教授, 博导。 E-mail: grjiang9@163.com
  • 基金资助:
    国家自然科学基金(12271119)

Stability Analysis of a Bipedal Robot Walking up a Slope

TONG Liyan1, JIANG Guirong1*, JIANG Bo2, LONG Tengfei2   

  1. 1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2023-05-08 Revised:2023-06-29 Published:2024-04-22

摘要: 为了研究上斜坡双足机器人行走周期步态稳定性,采用拉格朗日方法建立双足机器人行走脉冲混杂系统,构造庞加莱映射,再通过对映射不动点的分析得到机器人行走周期步态的存在性及稳定性条件。研究结果表明:在斜坡角为0.1 rad的条件下,当线性脉冲推力各项系数选取合适参数时,双足机器人上斜坡行走系统存在稳定的周期-1步态;当脉冲推力的常数项系数取值不同时,其对应产生不同类型的周期-1步态;当行走系统状态参数改变时,其产生不同运动状态的周期-1步态。

关键词: 双足机器人, 脉冲推力, 脉冲混杂系统, 庞加莱映射, 周期步态

Abstract: In order to study the stability of the walking periodic gait of a bipedal robot on an upper slope, a walking impulse hybrid system is established by using the Lagrangian method, and the existence and stability conditions of the periodic gait are obtained by constructing a Poincaré mapping and analyzing the fixed points of the mapping. The results show that under the condition that the slope angle is 0.1 rad, when an appropriate parameter is selected in the linear pulse thrust, there is a stable period -1 gait of the biped robot walking on the slope, and the different values of constant term of pulse thrustproduce different types of period -1 gait, and the period -1 gait with different motion states is produced when the walking system state parameters are changed.

Key words: bipedal robot, impulse thrust, impulse hybrid system, Poincaré mapping, periodic gait

中图分类号:  TP242.6

[1] 冯嘉礼,臧若兰,刘永昌.双足机器人稳定性控制的定性映射描述[J].广西师范大学学报(自然科学版),2006, 24(4):119-122. DOI: 10.3969/j.issn.1001-6600.2006.04.030.
[2] SAFARTOOBI M, DARDEL M, DANIALI H M. Gait cycles of passive walking biped robot modelwithflexible legs[J]. Mechanism and Machine Theory, 2021, 159: 104292. DOI: 10.1016/j.mechmachtheory.2021.104292.
[3] GARCIA M, CHATTERJEE A, RUINA A, et al. The simplest walking model: stability, complexity, and scaling[J]. Journal of Biomechanical Engineering, 1998, 120(2): 281-288. DOI:10.1115/1.2798313.
[4] DANESHMAND E, KHADIV M, GRIMMINGER F, et al. Variable horizon MPC with swing foot dynamics for bipedal walking control[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2349-2356.DOI: 10.1109/LRA.2021.3061381.
[5] KUO A D. Energetics of actively powered locomotion using the simplest walking model[J]. Journal of Biomechanical Engineering, 2002, 124(1): 113-120. DOI:10.1115/1.1427703.
[6] YU J, LI C, GONG D, et al. Walking simulation of biped robot on inclined plane based on gait recognition[C]// 2020 IEEE International Conference on Real-Time Computing and Robotics (RCAR). Los Alamitos, CA: IEEE Compurer Society, 2020: 256-261. DOI: 10.1109/RCAR49640.2020.9303259.
[7] GONG L L, ZHAO R W, LIANG J Y, et al. Periodic motion generation for the impactless biped walking up slopes via genetic algorithm[J]. Natural Computing, 2020, 19(4): 743-755. DOI:10.1007/s11047-019-09733-x.
[8] HAN Y H, CHO B K. Slope walking of humanoid robot without IMU sensor on an unknown slope[J]. Robotics and Autonomous Systems, 2022, 155: 104163. DOI:10.1016/j.robot.2022.104163.
[9] BEHERA P K, MANDAVA R K, VUNDAVILLI P R. Push recovery system and balancing of a biped robot on steadily increasing slope of an inclined plane[J]. International Journal of Computational Vision and Robotics, 2019, 9(1): 70-89. DOI: 10.1504/ijcvr.2019.098008.
[10] WANG K, FEI H Y, KORMUSHEV P. Fast online optimization for terrain-blind bipedal robot walking witha decoupled actuated SLIP model[J]. Frontiers in Robotics and AI, 2022, 9: 812258. DOI:10.3389/frobt.2022.812258.
[11] 杨子涵,刘卉,蒋量, 等.男性青年不同坡角斜面行走的步态特征研究[J].天津体育学院学报,2021,36(6):739-744. DOI: 10.13297/j.cnki.issn1005-0000.2021.06.018.
[12] ZNEGUI W, GRITLI H, BELGHITH S. Design of an explicit expression of the Poincaré mapfor the passive dynamic walking of the compass-gait biped model[J]. Chaos, Solitons & Fractals, 2020,130: 109436. DOI:10.1016/j.chaos.2019.109436.
[13] MAKARENKOV O. Existence and stability of limit cycles in the model of a planar passive biped walking down a slope[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2233): 20190450. DOI: 10.1098/rspa.2019.0450.
[14] GONG L L, SCHIEHLEN W. Impactless biped walking on a slope[J]. Theoretical and Applied Mechanics Letters, 2013, 3(1): 013002. DOI:10.1063/2.1301302.
[15] 吴伟国, 高力扬. 使用零力矩点反馈的双足机器人惯性参数辨识[J]. 哈尔滨工业大学学报, 2021, 53(7): 20-26. DOI: 10.11918/202011027.
[1] 陈嘉睿, 凌琳, 蒋贵荣. 脉冲推力作用下上楼梯双足机器人行走的建模与动力学分析[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 131-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韦中惠. 泽陆蛙的体温调节及静止代谢率[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 137 -142 .
[2] 刘希良, 宾石玉, 王开卓, 陈敦学, 成嘉, 张建社, 褚武英. 翘嘴鳜的人工繁殖与胚胎发育观察[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 100 -106 .
[3] 郭辰, 周飞, 韩彪, 潘翠, 吴洁敏, 杨婷, 尚常花. 假单胞菌亮氨酸氨肽酶基因克隆及生物信息学分析[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 156 -164 .
[4] 张文龙, 南新元. 基于改进YOLOv5的道路车辆跟踪算法[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 49 -57 .
[5] 袁静静, 郑宇钊, 徐晨枫, 殷婷婕. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1 -8 .
[6] 涂广升, 孔咏骏, 宋哲超, 叶康. 密文域可逆信息隐藏研究进展及技术难点分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 1 -15 .
[7] 杨杨阳, 朱震霆, 杨翠萍, 李世豪, 张舒, 范秀磊, 万蕾. 基于文献计量学分析的剩余污泥厌氧消化预处理研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 16 -29 .
[8] 许伦辉, 李金龙, 李若南, 陈俊宇. 基于动态生成对抗网络的路网缺失交通数据修复[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 30 -40 .
[9] 杨海, 谢亚琴. 基于Floyd算法的5G基站区域储能分配策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 41 -54 .
[10] 闫文文, 文中, 王爽, 李国祥, 王博宇, 吴艺. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55 -68 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发