|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 1-11.doi: 10.16088/j.issn.1001-6600.2022122001
• 综述 • 下一篇
李志豪1, 吴严生1*, 张钰芃2
LI Zhihao1, WU Yansheng1*, ZHANG Yupeng2
摘要: 随着量子计算机的迅速发展,抗量子攻击密码算法俨然成为密码学的研究热点。基于纠错码的McEliece公钥加密体制由Robert McEliece于1978年提出,是一种非对称抗量子攻击加密算法。本文首先介绍几种常见的纠错码——Reed-Solomon码、Goppa码、Twisted Reed-Solomon码的定义与基本性质,系统分析线性码的纠错译码算法;其次,详细阐述基于纠错码的McEliece公钥加密体制的加解密过程,并从NP-Hard问题对该加密体制进行安全性分析;最后,在前人研究成果的基础上,结合最近研究热点,提出几点思考和一些公开问题,为未来的研究提供参考。
中图分类号: TN918.3
[1] SHANNON C E. Communication theory of secrecy systems[J]. The Bell System technical Journal, 1949, 28(4): 656-715. [2] DIFFIE W, HELLMAN M E. New directions in cryptography[M]//SLAYTON R. Democratizing Cryptography: the Work of Whitfield Diffie and Martin Hellman. New York: Association for Computing Machinery, 2022: 365-390. [3] 陈仲津, 张先俊. 有纠错能力的PKC密码体制:CS码及其在电报通信中的应用[J]. 南京邮电学院学报, 1989, 9(1): 30-37. [4] 十三届全国人大常委会. 十三届全国人大常委会第十四次会议表决通过密码法[EB/OL].(2019-10-26)[2022-12-16]. https://news.ifeng.com/c/7r5T83aT5Qe. [5] 巫光福, 江林伟. 抗量子密码学综述[J]. 长江信息通信, 2021, 34(7): 55-60. [6] MCELIECE R J. A public-key cryptosystem based on algebraic coding theory: DSN Progress Report[R]. Washington, D.C.:NASA, 1978: 114-116. [7] 冯克勤. 纠错码的代数理论[M]. 北京: 清华大学出版社, 2005. [8] 朱陆费. 基于纠错码的公钥密码体制研究[D]. 南京: 南京邮电大学, 2009. [9] 杨淑娣, 岳勤. 一类线性码的完全重量分布[J]. 计算机工程与科学, 2019, 41(2): 281-285. [10] 陈恭亮. 信息安全数学基础[M]. 北京: 清华大学出版社, 2004. [11] REED I S, SOLOMON G. Polynomial codes over certain finite fields[J]. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2): 300-304. [12] 杨庚,章韵,成卫青,等. 计算机通信与网络[M]. 北京: 清华大学出版社, 2009. [13] LóPEZH H, MATTHEWS G L. Multivariate Goppa codes[J]. IEEE Transactions on Information Theory, 2023, 69(1): 126-137. [14] LAVAUZELLE J, RENNER J. Cryptanalysis of a system based on twisted Reed-Solomon codes[J]. Designs, Codes and Cryptography, 2020, 88(7): 1285-1300. [15] BLATEYANG. NP问题、NP难问题(NPH)和NP完全问题(NPC)理解[EB/OL].(2017-10-28)[2022-12-16]. https://blog.csdn.net/Blateyang/article/details/78375885. [16] DATABATMAN. 算法中的P问题、NP问题、NP完全问题和NP难问题[EB/OL]. (2015-10-21)[2022-12-16]. https://blog.csdn.net/databatman/article/details/49304295. [17] 曹东, 赵生妹, 宋耀良. 一种基于量子准循环LDPC码的McEliece公钥密码算法[J]. 南京邮电大学学报(自然科学版), 2011, 31(2): 64-68. [18] 谷利泽, 郑世慧, 杨义先. 现代密码学教程[M]. 北京: 北京邮电大学出版社, 2009. [19] BERSON T A. Failure of the McEliece public-key cryptosystem under message-resend and related-message attack[J]. Lecture Notes in Computer Science, 1997, 1294: 213-220. [20] 李喆, 韩益亮, 李鱼, 等. 基于编码的加密体制综述[J]. 国防科技大学学报, 2020, 42(4): 134-142. [21] RYAN J. A. Counting extended irreducible binary quartic Goppa codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1174-1178. [22] HUANG D T, YUE Q. Extended irreducible binary sextic Goppa codes[J]. IEEE Transactions on Information Theory, 2022, 68(1): 230-237. [23] CHEN B C, ZHANG G H. The number of extended irreducible binary Goppa codes[EB/OL].(2022-04-05)[2022-12-16].https://arxiv.org/abs/2204.02083V1. [24] THIONG-LY J A. Automorphisms of two families of extended non binary cyclic Goppa codes[J]. Lecture Notes in Computer Science, 1984, 229:112-121. [25] LI Z, XING C P, YEO S L. Reducing the key size of McEliece cryptosystem from automorphism-induced Goppa codes via permutations[J]. Lecture Notes in Computer Science, 2019, 11443:599-617. [26] BERLEKAMP E. Goppa codes[J]. IEEE Transactions on Information Theory, 1973, 19(5): 590-592. [27] SUGIYAMA Y, KASAHARA M, HIRASAWA S. et al, A method for solving key equation for decoding Goppa codes[J]. Information and Control, 1975, 27(1): 87-99. [28] PATTERSON N. The algebraic decoding of Goppa codes[J]. IEEE Transactions on Information Theory, 1975, 21(2): 203-207. [29] LIM S, LEE H S, CHOI M. An efficient decoding of Goppa codes for the McEliece cryptosystem[J]. Fundamenta Informaticae, 2014, 133(4): 387-397. [30] SHEN B Z, TZENG K K. Decoding geometric Goppa codes up to designed minimum distance by solving a key equation in a ring[J]. IEEE Transactions on Information Theory, 1995, 41(6): 1694-1702. [31] PORTER S C, SHEN B Z, PELLIKAAN R. Decoding geometric Goppa codes using an extra place[J]. IEEE Transactions on Information Theory, 1992, 38(11): 1663-1676. [32] HEYDTMANN A E. Sudan-decoding generalized geometric Goppa codes[J]. Finite Fields and Their Applications, 2003, 9(3): 267-285. [33] LIU H D L, PIRCHER S, ZEH A. et al, Decoding of (interleaved) generalized Goppa codes[C]. //2021 IEEE International Symposium on Information Theory (ISIT). Piscataway, NJ:IEEE, 2021: 664-669. [34] SUI J Z, ZHU X M, SHI X Y. MDS and near-MDS codes via twisted Reed-Solomon codes[J]. Designs,Codes and Cryptography, 2022, 90(8): 1937-1958. [35] HUANG D T, YUE Q, NIU Y F. MDS or NMDS LCD codes from twisted Reed-Solomon codes[J]. Cryptography and Communications, 2023, 15(2): 221-237. [36] CARLET C, MESNAGER S, TANG C M. et al. Euclidean and Hermitian LCD MDS codes[J]. Designs,Codes and Cryptography, 2018, 86(11): 2605-2618. [37] WU Y S, HYUN J Y, LEE Y. New LCD MDS codes of non-Reed-Solomon type[J]. IEEE Transactions on Information Theory, 2021, 67(8): 5069-5078. [38] FAUGèRE J C, OTMANI A, PERRET L. et al. Folding alternant and Goppa codes with non-trivial automorphism groups[J]. IEEE Transactions on Information Theory, 2016, 62(1): 184-198. [39] HEYSE S. Implementation of McEliece based on quasi-dyadic Goppa codes for embedded devices[J]. Lecture Notes in Computer Science, 2011, 7071: 143-162. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |