|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 12-24.doi: 10.16088/j.issn.1001-6600.2022040405
陈付坤, 陈星星*
CHEN Fukun, CHEN Xingxing*
摘要: 基于2种及以上半导体材料合理构建异质结构,可以整合多种组分的优势,促进光生载流子分离,扩大光吸收范围并保留光催化剂的高氧化还原能力,在太阳能利用和转换过程中有巨大的潜在应用。赤铁矿(hematite, α-Fe2O3)具有含量丰富、带隙合适和理论析氢效率高等多种优点,α-Fe2O3异质结构的构建一直是重要的研究方向。本文首先简要概述了光催化机理和异质结类型,尤其着重介绍了具有独特的光生载流子流动途径和优异光催化性能的Z型异质结;接着系统评述了近年来基于α-Fe2O3构建Z型异质结系统的热门光催化材料,并对未来有待进一步研究和解决的科学研究方向做一展望。
中图分类号: O643.36; O644.1
[1] 孙海杰,刘欣改,陈志浩,等.Ru/ZrO2催化剂催化氨硼烷水解产氢研究[J].广西师范大学学报(自然科学版), 2021,39(3):92-101. DOI: 10.16088/j.issn.1001-6600.2020030904. [2] 陈渊, 杨家添, 韦庆敏, 等. 方形花状Bi2WO6可见光催化降解制革废水[J].广西师范大学学报(自然科学版),2016,34(4):60-69. DOI: 10.16088/j.issn.1001-6600.2016.04.010. [3] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI: 10.1038/238037a0. [4] 刘威, 张淑婷, 罗颖, 等. 石墨烯基TiO2光催化产氢实验设计及性能研究[J].实验技术与管理,2022,39(3):42-46. DOI: 10.16791/j.cnki.sjg.2022.03.008. [5] 白雪, 张威, 韩俊萍, 等. 金属有机框架材料在光催化制氢领域的应用[J].中国材料进展,2022,41(3):206-214. DOI: 10.7502/j.issn.1674-3962.202006032. [6] 张宗伟, 李酽, 初飞雪. 稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J].广西师范大学学报(自然科学版),2014,32(2):117-121. DOI: 10.3969/j.issn.1001-6600.2014.02.020. [7] 黄华胜, 黄智, 何星存. Bi2O3/BiOCl异质结光催化剂降解罗丹明B[J].广西师范大学学报(自然科学版),2010,28(4):86-89. DOI: 10.3969/j.issn.1001-6600.2010.04.019. [8] 商林杰, 刘江, 兰亚乾. 共价有机框架材料用于光/电催化CO2还原的研究进展[J].应用化学,2022,39(4):559-584. DOI: 10.19894/j.issn.1000-0518.210439. [9] 唐兰勤, 贾茵, 朱志尚, 等. 光催化二氧化碳还原研究进展[J].物理学进展,2021,41(6):254-263. DOI: 10.13725/j.cnki.pip.2021.06.002. [10] 林淑注. 掺杂对α-Fe2O3气敏元件灵敏度及其它特性的影响[J].广西师范大学学报(自然科学版),1995,13(2):66-71. [11] 席清华,黄宜强,陈加祥,等.Fe2O3/g-C3N4光催化降解罗丹明B性能研究[J].华东师范大学学报(自然科学版),2021(3):151-160. DOI: 10.3969/j.issn.1000-5641.2021.03.015. [12] BAI S L, CHU H M, XIANG X, et al. Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting[J]. Chemical Engineering Journal, 2018, 350: 148-156. DOI: 10.1016/j.cej.2018.05.109. [13] 郭桂全, 胡巧红, 邢翠娟, 等. g-C3N4/Fe2O3复合光催化剂的制备、降解性能及其机理[J].化学研究与应用,2020,32(10):1896-1900. DOI: 10.3969/j.issn.1004-1656.2020.10.022. [14] 温强.Fe2O3/C复合纳米材料的制备及其光电性能研究[D].太原:太原理工大学,2021. DOI: 10.27352/d.cnki.gylgu.2021.001760. [15] MACHALA L, TUCˇEK J, ZBORˇIL R. Correction to polymorphous transformations of nanometric iron(Ⅲ) oxide: a review[J]. Chemistry of Materials, 2011, 23(18): 4271. DOI: 10.1021/cm2021824. [16] 刘思乐, 卜义夫, 陶洋, 等. g-C3N4掺杂TiO2/活性炭复合光催化剂的制备及其光催化性能[J].印染,2022,48(3):16-20. [17] 刘全諹,齐明亮,吕国琴,等.Fe2O3/PVDF光催化膜的制备及降解苯酚研究[J].水处理技术,2020,46(5):36-40. DOI: 10.16796/j.cnki.1000-3770.2020.05.007. [18] 涂盛辉, 陈帆, 孙英豪, 等. C-TiO2/CdS复合纤维膜的制备及光催化产氢性能研究[J]. 化工新型材料, 2022, 50(1): 94-98. DOI: 10.19817/j.cnki.issn1006-3536.2022.01.019. [19] 陈孟林, 宿程远, 王剑, 等. 增强型内电解-光催化处理活性艳兰染料废水研究[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 224-229. DOI: 10.16088/j.issn.1001-6600.2012.03.022. [20] 王鹏, 阳敏, 汤森培, 等. 蜂窝状C3N4/CoSe2/GA复合光催化剂的制备及CO2还原性能[J]. 高等学校化学学报, 2021, 42(6): 1924-1932. DOI: 10.7503/cjcu20200745. [21] CHEN F K, ZHANG L W, CHEN X X. Simultaneously tuning charge separation and surface reaction in a Fe2O3 photoanode for enhanced photoelectrochemical water oxidation[J]. ChemElectroChem, 2021, 8(23): 4522-4528. DOI: 10.1002/celc.202101329. [22] LI Y F, ZHOU M H, CHENG B, et al. Recent advances in g-C3N4-based heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2020, 56: 1-17. DOI: 10.1016/j.jmst.2020.04.028. [23] 田浩然, 刘福跃, 邰月辉, 等. 基于异质结的Bi2WO6/Bi2O2CO3复合光催化剂的制备及其在抗生素废水处理中的性能研究[J]. 现代化工, 2022, 42(5): 109-113,120. DOI: 10.16606/j.cnki.issn0253-4320.2022.05.022. [24] BARD A J, FOX M A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research, 1995, 28(3): 141-145. DOI: 10.1021/ar00051a007. [25] YU J G, WANG S H, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics, 2013, 15(39): 16883-16890. DOI: 10.1039/c3cp53131g. [26] 杨玉蓉, 马远驰, 刘宇飞. Z型异质结的结构及其在光催化领域的应用[J]. 黑河学院学报, 2022, 13(4): 181-183. DOI: 10.3969/j.issn.1674-9499.2022.04.057. [27] 张英芳, 马红超, 吕佳慧. Z型异质结构Co3O4-Fe2O3复合物的制备及光电催化性能[J]. 大连工业大学学报, 2021, 40(4): 285-290. DOI: 10.19670/j.cnki.dlgydxxb.2021.6002. [28] 汲畅, 王国胜. Ag3PO4/g-C3N4异质结催化剂可见光降解黄连素[J]. 无机盐工业, 2022, 54(4): 175-180. DOI: 10.19964/j.issn.1006-4990.2021-0398. [29] MOHAMED H H. Rationally designed Fe2O3/GO/WO3 Z-scheme photocatalyst for enhanced solar light photocatalytic water remediation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378: 74-84. DOI: 10.1016/j.jphotochem.2019.04.023. [30] 张星圆. 双Z型V2O5/FeVO4/Fe2O3复合光催化剂构建及光催化活性研究[D]. 沈阳: 辽宁大学, 2020. DOI: 10.27209/d.cnki.glniu.2020.000368. [31] LI Y, XIA Y, LIU K L, et al. Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: nanointerface and carbon sheath synergistic effect[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25494-25502. DOI: 10.1021/acsami.0c06601. [32] 杨优. α-Fe2O3/Cu2O多元微纳复合材料的设计及光催化性能研究[D]. 秦皇岛: 燕山大学, 2021. DOI: 10.1027440/d.cnki.gysdu.2021.000857. [33] HE S, YAN C, CHEN X Z, et al. Construction of core-shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis[J]. Applied Catalysis B: Environmental, 2020, 276: 119138. DOI: 10.1016/j.apcatb.2020.119138. [34] SUN Q, HOU P, WU S H, et al. The enhanced photocatalytic activity of Ag-Fe2O3-TiO2 performed in Z-scheme route associated with localized surface plasmon resonance effect[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127304. DOI: 10.1016/j.colsurfa.2021.127304. [35] WANG J C, ZHANG L, FANG W X, et al. Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visiblelight irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8631-8639. DOI: 10.1021/acsami.5b00822. [36] XIE J L, YANG P P, LIANG X R, et al. Self-improvement of Ti:Fe2O3 photoanodes: photoelectrocatalysis improvement after long-term stability testing in alkaline electrolyte[J]. ACS Applied Energy Materials, 2018, 1(6): 2769-2775. DOI: 10.1021/acsaem.8b00445. [37] PARWAZ KHAN A A, SINGH P, RAIZADA P, et al. Converting Ag3PO4/CdS/Fe doped C3N4 based dual Z-scheme photocatalyst into photo-Fenton system for efficient photocatalytic phenol removal[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 148-160. DOI: 10.1016/j.jiec.2021.04.007. [38] 徐文迪, 何茜, 常沙, 等. 基于Fe3+/EDTA-2Na的类芬顿对剩余污泥脱水性能的影响[J]. 环境科学研究, 2022, 35(6): 1475-1481. DOI: 10.13198/j.issn.1001-6929.2022.02.27. [39] 班飒, 朱浩, 王童, 等. 双Z型MIL-88A(Fe)/Ag3PO4/AgI光芬顿催化剂对染料的去除研究[J]. 中国环境科学, 2022, 42(7): 3164-3173. DOI: 10.19674/j.cnki.issn1000-6923.20220314.022. [40] ZHANG J, WU S Q, BI W J, et al. Z-scheme Fe2O3-doped Cu2O as an efficient photo-Fenton-like catalyst for degradation of phenol[J]. Materials Letters, 2019, 234: 13-16. DOI: 10.1016/j.matlet.2018.08.113. [41] ALKANAD K, HEZAM A, SUJAY SHEKAR G C, et al. Magnetic recyclable α-Fe2O3-Fe3O4/Co3O4-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants[J]. Catalysis Science & Technology, 2021, 11(9): 3084-3097. DOI: 10.1039/D0CY02280B. [42] LI Y Y, WU Q N, ZHANG K, et al. An effective CdS/Ti-Fe2O3 heterojunction photoanode: analyzing Z-scheme charge-transfer mechanism for enhanced photoelectrochemical water-oxidation activity[J]. Chinese Journal of Catalysis, 2021, 42(5):762-771. DOI: 10.1016/S1872-2067(20)63700-7. [43] CONG Y Q, GE Y H, ZHANG T T, et al. Fabrication of Z-scheme Fe2O3-MoS2-Cu2O ternary nanofilm with significantly enhanced photoelectrocatalytic performance[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 881-890. DOI: 10.1021/acs.iecr.7b04089. [44] LIANG Q, GAO W, LIU C H, et al. A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2020, 392:122500. DOI: 10.1016/j.jhazmat.2020.122500. [45] 刘婷婷. 三维花状Z型Zn3In2S6@α-Fe2O3异质结的构建及其光电催化性能研究[D]. 沈阳: 辽宁大学, 2021. DOI: 10.27209/d.cnki.glniu.2021.000459. [46] GUO Q, TANG G B, ZHU W J, et al. In situ construction of Z-scheme FeS2/Fe2O3 photocatalyst via structural transformation of pyrite for photocatalytic degradation of carbamazepine and the synergistic reduction of Cr(VI)[J]. Journal of Environmental Sciences, 2021, 101: 351-360. DOI: 10.1016/j.jes.2020.08.029. [47] GUO M J, XING Z P, ZHAO T Y, et al. Hollow flower-like polyhedral α-Fe2O3/defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic-Fenton performance via surface plasmon resonance and photothermal effects[J]. Applied Catalysis B: Environmental, 2020, 272: 118978. DOI: 10.1016/j.apcatb.2020.118978. [48] SHEN R C, ZHANG L P, CHEN X Z, et al. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2020, 266: 118619. DOI: 10.1016/j.apcatb.2020.118619. [49] LONG L Y, LV G Y, HAN Q T, et al. Achieving direct Z-scheme charge transfer through constructing 2D/2D α-Fe2O3/CdS heterostructure for efficient photocatalytic CO2 conversion[J]. The Journal of Physical Chemistry C, 2021, 125(42): 23142-23152. DOI: 10.1021/acs.jpcc.1c06259. [50] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. DOI: 10.1021/acs.chemrev.6b00075. [51] WANG J W, ZUO X J, CAI W, et al. Facile fabrication of direct solid-state Z-scheme g-C3N4/Fe2O3 heterojunction: a cost-effective photocatalyst with high efficiency for the degradation of aqueous organic pollutants[J]. Dalton Transactions, 2018, 47(43): 15382-15390. DOI: 10.1039/c8dt02893a. [52] 柴华. Fe2O3/ZnO/g-C3N4的制备及光催化氧化BPA性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.003775. [53] DUAN B R, MEI L. A Z-scheme Fe2O3/g-C3N4 heterojunction for carbon dioxide to hydrocarbon fuel under visible illuminance[J]. Journal of Colloid and Interface Science, 2020, 575: 265-273. DOI: 10.1016/j.jcis.2020.04.112. [54] 张维军. 多形貌Fe2O3/g-C3N4异质结复合光催化剂的制备及其光催化去除室内甲醛研究[D]. 兰州: 兰州大学, 2021. DOI: 10.27204/d.cnki.glzhu.2021.002531. [55] 何丙才. 氮化碳单原子催化剂-氧化铁Z型异质结光催化二氧化碳还原[D]. 天津: 天津理工大学, 2021. DOI: 10.27360/d.cnki.gtlgy.2021.000510. [56] CHEN Y F, TANG D, WANG Z H, et al. Z-scheme g-C3N4/Fe2O3 for efficient photo-oxidation of benzylamine under mild conditions[J]. Semiconductor Science and Technology, 2021, 36(7): 075004. DOI: 10.1088/1361-6641/ac00ce. [57] 王宇晶, 宋荷美, 张新东, 等. 可见光驱动Z-scheme g-C3N4/α-Fe2O3催化剂高效产H2[J]. 功能材料, 2020, 51(1): 1009-1015. DOI: 10.3969/j.issn.1001-9731.2020.01.002. [58] GUO H W, CHEN M Q, ZHONG Q, et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH[J]. Journal of CO2 Utilization, 2019, 33: 233-241. DOI: 10.1016/j.jcou.2019.05.016. [59] BALU S, VELMURUGAN S, PALANISAMY S, et al. Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 258-267. DOI: 10.1016/j.jtice.2019.03.011. [60] BALU S, CHEN Y L, JUANG R C, et al. Morphology-controlled synthesis of α-Fe2O3 nanocrystals impregnated on g-C3N4-SO3H with ultrafast charge separation for photoreduction of Cr (VI) under visible light[J]. Environmental Pollution, 2020, 267: 115491. DOI: 10.1016/j.envpol.2020.115491. [61] LI Y Y, ZHU S L, LIANG Y Q, et al. Synthesis of α-Fe2O3/g-C3N4 photocatalyst for high-efficiency water splitting under full light[J]. Materials & Design, 2020, 196: 109191. DOI: 10.1016/j.matdes.2020.109191. [62] SHAO H J, YAO P, CHEN Y, et al. Ball-milling method encapsulated α-Fe2O3 into g-C3N4 as efficient and stable photo-catalysts[J]. New Journal of Chemistry, 2021, 45(35): 16092-16100. DOI: 10.1039/d1nj02965g. [63] GUO T, WANG K, ZHANG G K, et al. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance[J]. Applied Surface Science, 2019, 469: 331-339. DOI: 10.1016/j.apsusc.2018.10.183. [64] LIU J, ZHAO X X, JING P, et al. A metal-organic-framework-derived g-C3N4/α-Fe2O3 hybrid for enhanced visible-light-driven photocatalytic hydrogen evolution[J]. Chemistry, 2019, 25(9): 2330-2336. DOI: 10.1002/chem.201805349. [65] MOHAMED R M, LSMAIL A A. Triblock copolymer-assisted synthesis of Z-scheme porous g-C3N4 based photocatalysts with promoted visible-light-driven performance[J]. Ceramics International, 2020, 46: 28903-28913. DOI: 10.1016/j.ceramint.2020.08.058. [66] 陈烽, 张成花, 金培岳等. 原位光沉积制备Z型α-Fe2O3/g-C3N4异质结及其可见光驱动光解水产氢性能[J]. 无机化学学报, 2022, 38(3): 469-478. DOI: 10.11862/CJIC.2022.045. [67] SHEN Y, HAN Q T, HU J Q, et al. Artificial trees for artificial photosynthesis: construction of dendrite-structured α-Fe2O3/g-C3N4 Z-scheme system for efficient CO2 reduction into solar fuels[J]. ACS Applied Energy Materials, 2020, 3(7): 6561-6572. DOI: 10.1021/acsaem.0c00750. [68] KADI M W, MOHAMED R M, ISMAIL A A, et al. Performance of mesoporous α-Fe2O3/g-C3N4 heterojunction for photoreduction of Hg(Ⅱ) under visible light illumination[J]. Ceramics International, 2020, 46(14): 23098-23106. DOI: 10.1016/j.ceramint.2020.06.087. [69] HOU M S, CUI L F, SU F Y, et al. Two-step calcination synthesis of Z-scheme α-Fe2O3/few-layer g-C3N4 composite with enhanced hydrogen production and photodegradation under visible light[J]. Journal of the Chinese Chemical Society, 2020, 67: 2050-2061. DOI: 10.1002/jccs.202000127. [70] WANG S C, TENG Z Y, XU Y Q, et al. Defect as the essential factor in engineering carbon-nitride-based visible-light-driven Z-scheme photocatalyst[J]. Applied Catalysis B: Environmental, 2020, 260: 118145. DOI: 10.1016/j.apcatb.2019.118145. [71] WANG J P, LI C Q, CONG J K, et al. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance[J]. Journal of Solid State Chemistry, 2016, 238: 246-251. DOI: 10.1016/j.jssc.2016.03.042. [72] KANG S, JANG J, PAWAR R C, et al. Low temperature fabrication of Fe2O3 nanorod film coated with ultra-thin g-C3N4 for a direct z-scheme exerting photocatalytic activities[J]. RSC Advances, 2018, 8: 33600-33613. DOI: 10.1039/c8ra04499f. [73] BAKR A E A, EL ROUBY W M A, KHAN M D, et al. Synthesis and characterization of Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation[J]. Solar Energy, 2019, 193: 403-412. DOI: 10.1016/j.solener.2019.09.052. [74] HUANG S, ZHENG B F, TANG Z Y, et al. CH3OH selective oxidation to HCHO on Z-scheme Fe2O3/g-C3N4 hybrid: the rate-determining step of C—H bond scission[J]. Chemical Engineering Journal, 2021, 422: 130086. DOI: 10.1016/j.cej.2021.130086. [75] CHEN C, LI Z H, GUO Y T, et al. A Z-scheme iron-based hollow microsphere with enhanced photocatalytic performance for tetracycline degradation[J]. Journal of Materials Research, 2021, 36: 1600-1613. DOI: 10.1557/s43578-021-00208-3. [76] SUN D R, JIA L M, WANG C, et al. Preparation of the additive-modified α-Fe2O3/g-C3N4 Z-scheme composites with improved visible-light photocatalytic activity[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106274. DOI: 10.1016/j.jece.2021.106274. [77] JIANG Z F, WAN W M, LI H M, et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction[J]. Advanced Materials, 2018, 30: 1706108. DOI: 10.1002/adma.201706108. [78] WANG L Y, WANG Y, LI X Y, et al. 3D/2D Fe2O3/g-C3N4 Z-scheme heterojunction catalysts for fast, effective and stable photo Fenton degradation of azo dyes[J]. Journal of Environmental Chemical Engineering, 2021, 9: 105907. DOI: 10.1016/j.jece.2021.105907. [79] LI Y P, LI F T, WANG X J, et al. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42: 28327-28336. DOI: 10.1016/j.ijhydene.2017.09.137. [80] GENG Y X, CHEN D Y, LI N J, et al. Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide[J]. Applied Catalysis B: Environmental, 2021, 280: 119409. DOI: 10.1016/j.apcatb.2020.119409. [81] SHANAVAS S, MOHANA ROOPAN S, PRIYADHARSAN A, et al. Computationally guided synthesis of (2D/3D/2D)rGO/Fe2O3/g-C3N4 nanostructure with improved charge separation and transportation efficiency for degradation of pharmaceutical molecules[J]. Applied Catalysis B: Environmental, 2019, 255: 117758. DOI: 10.1016/j.apcatb.2019. 117758. [82] ZHAO L M, GUO L J, TANG Y L, et al. Novel g-C3N4/C/Fe2O3 composite for efficient photocatalytic reduction of aqueous Cr(VI) under light irradiation[J]. Industrial & Engineering Chemistry Research, 2021, 60:13594-13603. DOI: 10.1021/acs.iecr.1c02411. [83] MA C C, LEE J, KIM Y, et al. Rational design of α-Fe2O3 nanocubes supported BiVO4 Z-scheme photocatalyst for photocatalytic degradation of antibiotic under visible light[J]. Journal of Colloid and Interface Science, 2021, 581: 514-522. DOI: 10.1016/j.jcis.2020.07.127. [84] FU S, YUAN W, LIU X M, et al. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance[J]. Journal of Colloid and Interface Science, 2020, 569: 150-163. DOI: 10.1016/j.jcis.2020.02.077. [85] ZHAO W L, WANG W L, HAN T Y, et al. Oxygen vacancies boosted charge separation towards enhanced photodegradation ability over 3D/2D Z-scheme BiO1-XBr/Fe2O3 heterostructures[J]. Separation and Purification Technology, 2021, 269: 118693. DOI: 10.1016/j.seppur.2021.118693. [86] AKTER J, HANIF M A, ISLAM M A, et al. Visible-light-active novel α-Fe2O3/Ta3N5 photocatalyst designed by band-edge tuning and interfacial charge transfer for effective treatment of hazardous pollutants[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106831. DOI: 10.1016/j.jece.2021.106831. [87] WANG M, LI D, ZHAO Y, et al. Bifunctional black phosphorus: coupling with hematite for Z-scheme photocatalytic overall water splitting[J]. Catalysis Science & Technology, 2021, 11(2): 681-688. DOI: 10.1039/D0CY01743D. [88] SONG J, LU Y, LIN Y, et al. A direct Z-scheme α-Fe2O3/LaTiO2N visible-light photocatalyst for enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2021, 292: 120185. DOI: 10.1016/j.apcatb.2021.120185. [89] MU Y F, ZHANG C, ZHANG M R, et al. Direct Z-scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22314-22322. DOI: 10.1021/acsami.1c01718. [90] CHEN L, WANG X, RAO Z P, et al. In-situ synthesis of Z-scheme MIL-100(Fe)/α-Fe2O3 heterojunction for enhanced adsorption and visible-light photocatalytic oxidation of O-xylene[J]. Chemical Engineering Journal, 2021, 416: 129112. DOI: 10.1016/j.cej.2021.129112. [91] ZHU H J, CHEN Z H, HU Y Y, et al. A novel immobilized Z-scheme P3HT/α-Fe2O3 photocatalyst array: study on the excellent photocatalytic performance and photocatalytic mechanism[J]. Journal of Hazardous Materials, 2020, 389: 122119. DOI: 10.1016/j.jhazmat.2020.122119. [92] ZHANG Y P, TANG H L, DONG H, et al. Covalent-organic framework based Z-scheme heterostructured noble-metal-free photocatalysts for visible-light-driven hydrogen evolution[J]. Journal of Materials Chemistry A, 2020, 8(8): 4334-4340. DOI: 10.1039/C9TA12870K. [93] JIANG Y, LIAO J F, CHEN H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction[J]. Chem, 2020, 6(3): 766-780. DOI: 10.1016/j.chempr.2020.01.005. |
[1] | 赵东江, 马松艳, 田喜强. CoSe2/C催化剂在电催化氧还原中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 30-43. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |