|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 183-198.doi: 10.16088/j.issn.1001-6600.2021112707
阿尧林1, 王耀辉2, 董金超1*, 李剑锋1,2
A Yaolin1, WANG Yaohui2, DONG Jinchao1*, LI Jianfeng1,2
摘要: 面对日益严重的环境污染和能源危机,开发高效清洁的能源转换技术受到人们广泛的关注。以电催化为代表的电化学能源转换技术由于高效且无污染,近些年获得快速发展。然而,固/液界面电催化反应涉及多种反应物种,使得其机理解释非常困难,限制了高效电催化剂的理性设计和开发。电化学原位增强拉曼光谱技术具有灵敏度高、选择性好、指纹识别的优点,可以从分子原子水平揭示电催化反应过程。本文综述电化学原位增强拉曼光谱在一些重要电催化反应研究中的应用,包括氧还原反应、氢氧化反应、氧析出反应、氢析出反应、二氧化碳还原反应过程等。最后,总结原位增强拉曼光谱技术在电催化反应研究中面临的一些问题,并对其发展进行简要展望。
中图分类号:
[1]SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998. DOI:10.1126/science.eaad4998. [2]JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. DOI:10.1039/c4cs00470a. [3]BENCK J D, HELLSTERN T R, KIBSGAARD J. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis, 2014, 4(11): 3957-3971. DOI:10.1021/cs500923c. [4]SHAO J D, WANG Y, GAO D F, et al. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide[J]. Chinese Journal of Catalysis, 2020, 41(9): 1393-1400. DOI:10.1016/s1872-2067(20)63577-x. [5]GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35. DOI:10.1016/j.apcatb.2004.06.021. [6]SHAO M H, CHANG Q W, DODELET J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016, 116(6): 3594-3657. DOI:10.1021/acs.chemrev.5b00462. [7]TRINDELL J A, DUAN Z Y, HENKELMAN G, et al. Well-defined nanoparticle electrocatalysts for the refinement of theory [J]. Chemical Reviews, 2020, 120(2): 814-850. DOI:10.1021/acs.chemrev.9b00246. [8]MARKOVIĆN M, ROSS P N. Surface science studies of model fuel cell electrocatalysts[J]. Surface Science Reports, 2002, 45(4/6): 117-229. DOI:10.1016/S0167-5729(01)00022-X. [9]ZHU Y P, KUO T R, LI Y H, et al. Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy[J]. Energy and Environmental Science, 2021, 14(4): 1928-1958. DOI:10.1039/d0ee03903a. [10]LI J F, LI C Y, AROCA R F. Plasmon-enhanced fluorescence spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 3962-3979. DOI:10.1039/c7cs00169j. [11]MCBREEN P H, MOSKOVITS M. A surface-enhanced Raman study of ethylene and oxygen interacting with supported silver catalysts[J]. Journal of Catalysis, 1987, 103(1): 188-199. DOI:10.1016/0021-9517(87)90105-9. [12]LEUNG L W H, WEAVER M J. Extending the metal interface generality of surface-enhanced Raman spectroscopy: underpotential deposited layers of mercury, thallium, and lead on gold electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 217(2): 367-384. DOI:10.1016/0022-0728(87)80229-2. [13]任斌,李剑锋,黄逸凡,等. 电化学表面增强拉曼光谱:现状和展望[J].电化学,2010,16(3):305-316. DOI:10.13208/j.electrochem.2010.03.009. [14]王姝凡,张雁玲,王少军,等. 表面增强拉曼光谱基底研究进展[J].当代化工,2022,51(1):206-210. DOI:10.13840/j.cnki.cn21-1457/tq.2022.01.044. [15]LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395. DOI:10.1038/nature08907. [16]蒋治良,韦燕燕,王盛棉,等. 用2-巯基吡啶做分子探针SERRS光谱测定痕量金[J].广西师范大学学报(自然科学版),2012,30(3):218-223. DOI:10.16088/j.issn.1001-6600.2012.03.021. [17]LI J F, ZHANG Y J, DING S Y, et al. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(7): 5002-5069. DOI:10.1021/acs.chemrev.6b00596. [18]苏敏,董金超,李剑锋. 单晶电极界面反应过程的电化学原位拉曼光谱研究[J]. 电化学,2020, 26(1):54-60. DOI:10.13208/j.electrochem.181241. [19]LI J F, ZHANG Y J, RUDNEV A V, et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface[J]. Journal of the American Chemical Society, 2015, 137(6): 2400-2408. DOI:10.1021/ja513263j. [20]WANG Y H, WEI J, RADJENOVIC P, et al. In situ analysis of surface catalytic reactions using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(3): 1675-1685. DOI:10.1021/acs.analchem.8b05499. [21]赵东江,马松艳,田喜强. CoSe2/C催化剂在电催化氧还原中的应用研究进展[J].广西师范大学学报(自然科学版),2021,39(5):30-43. DOI:10.16088/j.issn.1001-6600.2020112302. [22]SÖNCHEZ-SÖNCHEZ C M, BARD A J. Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy[J]. Analytical Chemistry, 2009, 81(19): 8094-8100. DOI:10.1021/ac901291v. [23]YU L, PAN X, CAO X M, et al. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study[J]. Journal of Catalysis, 2011, 282(1): 183-190. DOI:10.1016/j.jcat.2011.06.015. [24]GÓMEZ-MARÍN A M, RIZO R, FELIU J M. Oxygen reduction reaction at Pt single crystals: a critical overview[J]. Catalysis Science and Technology, 2014, 4(6): 1685-1698. DOI:10.1039/c3cy01049j. [25]DONG J C, ZHANG X G, BRIEGA-MARTOS V, et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces[J]. Nature Energy, 2019, 4(1): 60-67. DOI:10.1038/s41560-018-0292-z. [26]DONG J C, SU M, BRIEGA-MARTOS V, et al. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces[J]. Journal of the American Chemical Society, 2020, 142(2): 715-719. DOI:10.1021/jacs.9b12803. [27]CHEN H Q, ZHENG T L, HE Q G, et al. Local coordination and ordering engineering to design efficient core-shell oxygen reduction catalysts[J]. Journal of the Electrochemical Society, 2020, 167(14): 144501. DOI:10.1149/1945-7111/abc1a5. [28]ZE H J, CHEN X, WANG X T, et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy[J]. Journal of the American Chemical Society, 2021, 143(3): 1318-1322. DOI:10.1021/jacs.0c12755. [29]WANG Y H, LE J B, LI W Q, et al. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR)[J]. Angewandte Chemie International Edition, 2019, 58(45): 16062-16066. DOI:10.1002/anie.201908907. [30]KIM J, GEWIRTH A A. Mechanism of oxygen electroreduction on gold surfaces in basic media[J]. Journal of Physical Chemistry B, 2006, 110(6): 2565-2571. DOI:10.1021/jp0549529. [31]DURST J, SIEBEL A, SIMON C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy and Environmental Science, 2014, 7(7): 2255-2260. DOI:10.1039/c4ee00440j. [32]LU S Q, ZHUANG Z B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte[J]. Journal of the American Chemical Society, 2017, 139(14): 5156-5163. DOI:10.1021/jacs.7b00765. [33]WANG Y H, WANG X T, ZE H J, et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction[J]. Angewandte Chemie International Edition, 2021, 60(11): 5708-5711. DOI:10.1002/anie.202015571. [34]JAMESH M I, SUN X M. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting: a review[J]. Journal of Power Sources, 2018, 400: 31-68. DOI:10.1016/j.jpowsour.2018.07.125. [35]KIM J S, KIM B, KIM H, et al. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(11): 1702774. DOI:10.1002/aenm.201702774. [36]SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. DOI:10.1039/c6cs00328a. [37]LOUIE M W, BELL A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2013, 135(33): 12329-12337. DOI:10.1021/ja405351s. [38]HUANG J W, LI Y Y, ZHANG Y D, et al. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(48): 17458-17464. DOI:10.1002/anie.201910716. [39]YEO B S, BELL A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2011, 133(14): 5587-5593. DOI:10.1021/ja200559j. [40]FENG L L, YU G T, WU Y Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015, 137(44): 14023-14026. DOI:10.1021/jacs.5b08186. [41]SHI Y M, DU W, ZHOU W, et al. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(50): 22470-22474. DOI:10.1002/anie.202011097. [42]MAHMOOD N, YAO Y D, ZHANG J W, et al. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions[J]. Advanced Science, 2018, 5(2): 1700464. DOI:10.1002/advs.201700464. [43]ZHAO Y Q, LING T, CHEN S M, et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2019, 58(35): 12252-12257. DOI:10.1002/anie.201905554. [44]MORALES-GUIO C G, HU X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Accounts of Chemical Research, 2014, 47(8): 2671-2681. DOI:10.1021/ar5002022. [45]CHEN J Z, LIU G G, ZHU Y Z, et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2[J]. Journal of the American Chemical Society, 2020, 142(15): 7161-7167. DOI:10.1021/jacs.0c01649. [46]BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745. DOI:10.1038/s41560-019-0450-y. [47]ZHAO Y R, CHANG X X, MALKANI A S, et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction[J]. Journal of the American Chemical Society, 2020, 142(21): 9735-9743. DOI:10.1021/jacs.0c02354. [48]ZHU D D, LIU J L, QIAO S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. DOI:10.1002/adma.201504766. [49]REN D, ANG B S H, YEO B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts[J]. ACS Catalysis, 2016, 6(12): 8239-8247. DOI:10.1021/acscatal.6b02162. [50]DUTTA A, KUZUME A, RAHAMAN M, et al. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study[J]. ACS Catalysis, 2015, 5(12): 7498-7502. DOI:10.1021/acscatal.5b02322. [51]VASILEFF A, ZHI X, XU C C, et al. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys[J]. ACS Catalysis, 2019, 9(10): 9411-9417. DOI:10.1021/acscatal.9b02312. |
[1] | 钟新仙, 王志洪, 银小玲, 王延君, 黄寒星, 冯崎鹏. 铂修饰聚苯胺-聚硫堇复合电极对甲醇的电催化氧化[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 75-80. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |