广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (4): 63-67.doi: 10.16088/j.issn.1001-6600.2017.04.009

• • 上一篇    下一篇

一类特殊的组合批处理码

李勇刚1,秦丽珍1,陈迪三1,程民权2,*   

  1. 1.广西师范大学漓江学院,广西 桂林 541006;
    2.广西师范大学 计算机科学与信息工程学院,广西 桂林 541004
  • 出版日期:2017-07-25 发布日期:2018-07-25

A Special Kind of Combinatorial Batch Codes

LI Yonggang1, QIN Lizhen1, CHEN Disan1, CHENG Minquan2,*   

  1. 1. Lijiang College of Guangxi Normal University, Guilin Guangxi 541006, China;
    2. College of Computer Science and Information Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 组合批处理码在数据存储和数据恢复方面有十分重要的应用价值。本文将针对特殊的参数k=p(p+1),构造一类对偶集合系统,并证明该对偶集合系统满足k-Hall条件,从而得到一类CBC上界,其结果比现有结果要好。

关键词: 组合批处理码, 对偶集合系统, 最优CBC

Abstract: Combinatorial batch codes (CBCs in short) has an important application in data storage and data recovery. In this paper, firstly a new kind of dual set system, which satisfies thek-Hall condition, is constructed with the parameter k=p (p+1). Then by means of this set system, a new upper bound on the size of a CBC is derived. Finally the upper bound is proved to be tighter than the previous results.

Key words: combinatorial batch codes, dual set system, optimal CBC

中图分类号: 

  • O157.4
[1] ISHAI Y,KUSHILEVITZ E,OSTROVSKY R,et al. Batch codes and their applications[C] // Proceedings of the thirty-sixth annual ACM symposium on theory of computing. New York: ACM Press, 2004:262-271. DOI:10.1145/1007352.1007396.
[2] PATTERSON M B,STINSON D R,WEI R. Combinatorial batch codes[J] . Advances in Mathematics of Communications,2009,3(1):13-27. DOI:10.3934/amc.2009.3.13.
[3] 贾冬冬,申月波,张更生. 组合批处理码的研究综述[J] . 数学进展,2015,44(6):801-808. DOI:10.11845/sxjz.2015003a.
[4] BUJTS C, TUZA Z. Optimal combinatorial batch codes derived from dual systems[J] . Miskolc Mathematical Notes,2011,12(1):11-23.
[5] 贾冬冬,张更生,袁兰党.一类最优组合批处理码[J] . 数学学报(中文版),2016,59(2):267-278.
[6] BRUALDI R A,KIERNAN K P,MEYER S A,et al. Combinatorial batch codes and transversal matroids[J] . Advances in Mathematics of Communications,2010,4(3):419-431. DOI:10.3934/amc.2010.4.419.
[7] 陈俊芳,张素梅,张更生.最优组合批处理码的单调性质及上下界[J] .中国科学:数学,2015,45(3):311-320. DOI:10.1360/N012014-00061.
[8] 李勇刚,陈迪三,王金玉.基于p结构的一类组合批处理码[J] .数学进展,2017,46(3):331-341. DOI:10.11845/sxjz.2016040b.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发