Journal of Guangxi Normal University(Natural Science Edition) ›› 2014, Vol. 32 ›› Issue (3): 57-60.

Previous Articles     Next Articles

The Perimeter and Its Preserving Operators of Rank-1 Matrices over Inclines

ZHANG Ting-hai   

  1. College of Mathematics and Informatics, Jiangxi Normal University, Nanchang Jiangxi 330022, China
  • Received:2014-03-10 Online:2014-09-25 Published:2018-09-25

Abstract: Inclines are the additively idempotent semirings in which products are less than or equal to factors. They generalize Boolean algebra, fuzzy algebra and distributive lattice. This paper defines that the perimeter of rank-1 matrices over inclines is the sum of nonzero elements of its left and right factors, and proves the inequality about the perimeter of the sum of rank-1 matrices over inclines and gives the preserving operators of rank-1 matrices over inclines. The results in the present paper generalize and develop correlated results over Boolean matrices and fuzzy matrices.

Key words: inclines matrices , rank-1, perimeter, dominate, operator

CLC Number: 

  • O151.21
[1] CAO Zhi-qiang, KIM K H, ROUSH F W.Incline Algebra and Applications[M]. Chichester, UK: Ellis Horwood, Ltd,1984.
[2] HAN Song-chol, LI Hong-xing. Indices and periods of incline matrices[J].Linear Algebra Appl,2004,387:143-165.
[3] HAN Song-chol, LI Hong-xing. Invertible incline matrices and Cramer’s rule over inclines[J].Linear Algebra Appl,2004, 389:121-138.
[4] HAN Song-chol, LI Hong-xing, WANG Jia-yin.On nilpotent incline matrices[J].Linear Algebra Appl,2005, 406:201-217.
[5] 黄衍,谭宜家.关于坡矩阵的一个问题[J].福州大学学报:自然科学版,2009,37(1):12-18.
[6] 张国勇.坡矩阵的积和式算子及若干不等式[J].数学研究,2011,44(3):313-318.
[7] BEASLEY L B,PULLMAN N J.Boolean-rank-preserving operators and Boolean-rank-1 spaces[J]. Linear Algebra Appl,1984, 59:55-77.
[8] BEASLEY L B,PULLMAN N J.Fuzzy rank-preserving operators[J]. Linear Algebra Appl, 1986, 73:197-211.
[9] BEASLEY L B,PULLMAN N J.Term-rank,permanent and rook-polynomial preservers[J]. Linear Algebra Appl, 1987, 90:33-46.
[10] SONG S Z,BEASLEY L B, CHEON G S, et al. Rank and perimeter preservers of Boolean rank-1 matrices[J]. J Korean Math Soc, 2004, 41(2):397-406.
[11] SONG S Z,KANG K T,BEASLEY L B. Linear operators that preserve perimeters of matrices over semirings[J]. J Korean Math Soc, 2009, 46(1):113-123.
[12] 张廷海,甘爱萍.Min-Algebra上矩阵的μ值[J].江西师范大学学报:自然科学版,2013,37(3):225-228.
[13] BEASLEY L B,GUTERMAN A E.Rank inequalities over semirings[J]. J Korean Math Soc,2005, 42(2):223-241.
[1] ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85.
[2] YAN Rongjun, WEI Yuming, FENG Chunhua. Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 75-82.
[3] LI Shan-shan, FEI Ming-gang. Hermite Polynomials Related to the Dunkl-Clifford Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 73-80.
[4] ZHANG Tai-zhong, LU Heng, CHENG Ya-ping. A Study on a Kind of Compact Extended Cesàro Operators [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 64-67.
[5] WANG Sheng-jun, DOU Jing-bo. Poincaré Inequality and Hardy-Sobolev Inequality for GreinerOperator in R2n+1 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 29-34.
[6] ZHANG Guo-feng, YU Tao. Slant Toeplitz Operators on Dirichlet Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!