Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (1): 84-92.doi: 10.16088/j.issn.1001-6600.2016.01.013

Previous Articles     Next Articles

Generalized Ornstein-Uhlenbeck Processes Associatedwith Martingale and Its Application in Finance

HU Hua   

  1. School of Mathematics and Computer Science,Ningxia University,Yinchuan Ningxia 750021,China)
  • Received:2015-09-23 Published:2018-09-14

Abstract: The two-dimensional joint distribution of the first passage times of spectrally negative generalized Ornstein-Uhlenbeck processes at a constant level and their original stop atthe first passage time, are studied in this paper. Based on some results about Levy and GOU processes, an explicit expression of the Laplace transform of the distribution in terms of new special functions is given by using martingale and Markov chain method. This paper detailedly studies the generalized Ornstein-Uhlenbeck process in the steady state, and provides the Laplasce transformation formula of the European call option price in the generalized Vasicek model, which generalizes the existing results.

Key words: martingales, generalized Ornstein-Uhlenbeck process, Laplace transform, first passage time, term structure, path dependent options

CLC Number: 

  • O211.6
[1] BEHME A,LINDNER A.Multivariate generalized Ornstein-Uhlenbeck processes[J].Stochastic Processes and Their Applications,2012,122(4):1487-1518. DOI:10.1016/j.spa.2012.01.002.
[2] BO Lijun,YANG Xuewei.Sequential maximum likelihood estimation for reflected generalized Ornstein-Uhlenbeck processes[J]. Statistics and Probability Letters,2012,82(7):1374-1382. DOI:10.1016/j.spl.2012.03.018.
[3] HADJIEV D I.The first passage problem for generalized Ornstein-Uhlenbeck processes with nonpositive jumps[M]// AZÉMA J,YOR M.Seminaire de Probabilites XIX 1983/84:Lecture Notes in Mathematics Volume 1123.Berlin: Springer,1985:80-90.DOI:10.1007/BFb0075840.
[4] BORODIN A N,SALMINEN P.Handbook of brownian motion:facts and formulae[M].2nd ed.Basel:Birkhauser Verlag,2002.
[5] CARMONA P,PETIT F,YOR M.Exponential functionals of Levy processes[M]//BARNDORFF-NIELSEN O E,RESNICK S I,MIKOSCH T.Levy Processes:Theory and Applications.Boston,MA:Birkhauser Boston,2001:41-55. DOI:10.1007/978-1-4612-0197-7_2.
[6] BERTOIN J.On the Hilbert transform of the local times of a Levy process[J].Bull Sci Math,1995,119(2):147-156.
[7] LACHAL A.Quelques martingales associées à l’intégrale du processus d’ornstein-uhlenbeck,application à l’étude despremiers instants d’atteinte[J].Stochastics and Stochastic Reports,1996,58(3/4):285-302.DOI: 10.1080/ 17442509608834078.
[8] BARNDORFF-NIELSEN O E,SHEPHARD N.Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[J].J Roy Statist Soc:Ser B(Statist Methodol),2001,63(2):167-241. DOI:10.1111/1467-9868.00282.
[9] FASEN V.Statistical estimation of multivariate Ornstein-Uhlenbeck processes and applications to co-integration[J].Journal of Econometrics,2013,172(2):325-337. DOI:10.1016/j.jeconom.2012.08.019.
[10] 孙丽娟.随机利率下基于O-U过程的欧式期权定价[J].荆楚理工学院学报,2011,26(2):47-51.
[11] 刘敬伟.Vasicěk随机利率模型下指数O-U过程的幂型期权鞅定价[J].数学的实践与认识,2009,39(1):31-39.
[12] DUFFIE D,FILIPOVIC D,SCHACHERMAYER W.Affine processes and applications in finance[J].Ann Appl Probab,2003,13(3):984-1053.
[13] SATO K.Levy processes and infinetely divisible distributions[M].Cambridge:Cambridge University Press,1999.
[14] NOVIKOV A.Martingales and first-passage times for Ornstein-Uhlenbeck processes with a jump component[J]. Theory of Probability and Its Applications,2004,48(2):288-303.DOI:10.1137/S0040585X97980403.
[15] SKOROHOD A V.Random Processes with Independent Increments[M].Dordrecht:Kluwer Academic Publishers,1991.
[16] NOVIKOV A A.A martingale approach in problems on first crossing time of nonlinear boundaries[J].Proceedings of the Steklov Institute of Mathematics,1983,4:141-163.
[17] 李志广,康淑瑰.混合分数布朗运动环境下短期利率服从vasicek模型的欧式期权定价[J/OL].数学杂志,2014[2015-09-10].http://www.cnki.net/kcms/doi/10.13548/j.sxzz.20130311004.html.
[18] 王晶,张兴永.利率服从Vasicek模型下的欧式期权定价[J].安庆师范学院学报(自然科学版),2011,17(3):35-37,45.
[19] LEBLANC B,SCAILLET O.Path dependent options on yields in the affine term structure[J].Finance and Stochastics,1998,2(4):349-367.DOI:10.1007/s007800050045.
[1] WANG Jiaqin, DENG Guohe. Pricing of Interest Rate Derivatives Based on Affine Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 74-85.
[2] TANG Sheng-da, QIN Yong-song. Gerber-Shiu Function of MAP Risk Process Perturbedby Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Chunmei, LU Shiyin, LIANG Yonghong, MO Xiaomin, LI Weidong, HUANG Yuanjie, CHENG Xiaojing, SU Zhiheng, ZHENG Hua. Electron Microscopy Study on the Apoptosis and Autophagy of the Hepatic Stellate Cells Induced by Total Alkaloids[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 76 -79 .
[2] LI Yuhui, CHEN Zening, HUANG Zhonghao, ZHOU Qihai. Activity Time Budget of Assamese macaque (Macaca assamensis) during Rainy Season in Nonggang Nature Reserve, Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 80 -86 .
[3] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[4] ZHUANG Fenghong, MA Jiangming, ZHANG Yajun, SU Jing, YU Fangming. Eco-Physiological Responses of Leaves of Isoetes sinensis to Light Intensity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 93 -100 .
[5] WEI Hongjin, ZHOU Xile, JIN Dongmei, YAN Yuehong. Additions to the Pteridophyte Flora of Hunan, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 101 -106 .
[6] BAO Jinping, ZHENG Lianbin, YU Keli, SONG Xue, TIAN Jinyuan, DONG Wenjing. Skinfold Thickness Characteristics of Yi Adults in Daliangshan,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 107 -112 .
[7] LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red Bed Karst and Its Hydrochemical Characteristics of Groundwater in the Downstream of Qingjiang River, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 113 -120 .
[8] ZHANG Ru, ZHANG Bei, REN Hongrui. Spatio-temporal Dynamics Analysis and Its Affecting Factors of Cropland Loss in Xuangang Mining Area, Shanxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 121 -132 .
[9] LI Xianjiang, SHI Shuqin, CAI Weimin, CAO Yuqing. Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 133 -143 .
[10] WANG Mengfei, HUANG Song. Spatial Linkage of Tourism Economy of Cities in West River Economic Belt in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 144 -150 .