Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 64-73.doi: 10.16088/j.issn.1001-6600.2023041407

Previous Articles     Next Articles

Fault Location of a Distribution Network Hierarchical Model with a Distribution Generator Based on ICOA-IEM

WU Yi, WEN Zhong*, FENG Ling, QIN Zhiyin, ZHENG Lianhua, TANG Weizhao   

  1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang Hubei 443002, China
  • Received:2023-04-14 Revised:2023-07-24 Online:2024-07-25 Published:2024-09-05

Abstract: The large-scale integration of distributed power sources complicates the structure of the distribution network, resulting in increased difficulty in fault localization. A distribution network partition fault location method with improved chimpanzee algorithm is proposed. Firstly, Iteration mapping is introduced to improve the initialized population quality, and then Cauchy variation and backward learning strategy as well as simplex method are added to improve the local exploitation capability and exploration capability of the algorithm. The switching function and objective function containing distributed power supply are established, and the region is divided according to the correspondence mechanism between the fault point and the switching function. Finally, it is verified by simulation that the proposed method improves the solution speed by 43.05% on average and the accuracy by 1.17% on average compared with the traditional chimpanzee algorithm partitioning localization method. It is shown that the method can accurately and rapidly locate the faulty zones with high fault tolerance.

Key words: distribution generator, distribution network, fault location, subregion, improved chimpanzee algorithm

CLC Number:  TM73
[1] 缪希仁,赵丹,刘晓明,等.含分布式电源配电网短路保护研究综述[J].高电压技术,2023,49(7):3006-3019. DOI: 10.13336/j.1003-6520.hve.20220922.
[2] 马新娜,赵猛,祁琳.基于卷积脉冲神经网络的故障诊断方法研究[J].广西师范大学学报(自然科学版),2022,40(3):112-120. DOI: 10.16088/j.issn.1001-6600.2021070808.
[3] 邹艳丽,汪洋,刘树生,等.带有邻居度信息的容量负载模型下电网级联故障研究[J].广西师范大学学报(自然科学版),2019,37(4):27-36. DOI: 10.16088/j.issn.1001-6600.2019.04.003.
[4] 詹惠瑜,刘科研,盛万兴,等.有源配电网故障诊断与定位方法综述及展望[J].高电压技术,2023,49(2):660-671. DOI: 10.13336/j.1003-6520.hve.20211604.
[5] AZEROUAL M, BOUJOUDAR Y, ALJARBOUH A, et al. A multi-agent-based for fault location in distribution networks with wind power generator[J]. Wind Engineering, 2022, 46(3): 700-711. DOI: 10.1177/0309524X211044507.
[6] 徐彪,尹项根,张哲,等.矩阵算法和优化算法相结合的配电网故障定位[J].电力系统自动化,2019,43(5):152-158. DOI: 10.7500/AEPS20180115002.
[7] HE H Y, LU Z G, GUO X Q, et al. Optimized control strategy for photovoltaic hydrogen generation system with particle swarm algorithm[J]. Energies, 2022, 15(4): 1472. DOI: 10.3390/en15041472.
[8] 郑涛,潘玉美,郭昆亚,等.基于免疫算法的配电网故障定位方法研究[J].电力系统保护与控制,2014,42(1):77-83. DOI: 10.7667/j.issn.1674-3415.2014.01.011.
[9] 张颖,周韧,钟凯.改进蚁群算法在复杂配电网故障区段定位中的应用[J].电网技术,2011,35(1):224-228. DOI: 10.13335/j.1000-3673.pst.2011.01.032.
[10] 吉兴全,张朔,张玉敏,等.基于IELM算法的配电网故障区段定位[J].电力系统自动化,2021,45(22):157-166. DOI: 10.7500/AEPS20210121007.
[11] 卫志农,何桦,郑玉平.配电网故障区间定位的高级遗传算法[J].中国电机工程学报,2002,22(4):127-130. DOI: 10.3321/j.issn:0258-8013.2002.04.026.
[12] 颜景斌,夏赛,王飞,等.基于改进遗传算法的有源配电网故障定位分析[J].电力系统及其自动化学报,2019,31(6):107-112. DOI: 10.3969/j.issn.1003-8930.2019.06.017.
[13] 周湶,郑柏林,廖瑞金,等.基于粒子群和差分进化算法的含分布式电源配电网故障区段定位[J].电力系统保护与控制,2013,41(4):33-37. DOI: 10.7667/j.issn.1674-3415.2013.04.006.
[14] 舒凡娣,谢嘉晟,廖晓娇,等.结合粒子群算法和穷举法的配电网故障诊断方法[J].智慧电力,2019,47(1):94-99. DOI: 10.3969/j.issn.1673-7598.2019.01.017.
[15] 陈磊,詹跃东,田庆生.基于改进二进制灰狼优化算法的配网故障定位[J].电子测量技术,2019,42(1):1-5. DOI: 10.19651/j.cnki.emt.1802075.
[16] 任志玲,刘卫东,杨柳,等.基于改进鸽群算法的含分布式电源配电网故障定位[J].电源学报,2022,20(4):171-178. DOI: 10.13234/j.issn.2095-2805.2022.4.171.
[17] KHISHE M, MOSAVI M R. Chimp optimization algorithm[J]. Expert Systems with Applications, 2020, 149: 113338. DOI: 10.1016/j.eswa.2020.113338.
[18] 谢国民,陈天香.改进黑猩猩算法的光伏发电功率短期预测[J].电力系统及其自动化学报,2024, 36(2): 135-143. DOI: 10.19635/j.cnki.csu-epsa.001241.
[19] 黄倩,刘升,李萌萌,等.多策略黑猩猩优化算法研究及其工程应用[J].计算机工程与应用,2022,58(19):174-183. DOI: 10.3778/j.issn.1002-8331.2101-0520.
[20] 刘琨,赵露露,王辉.一种基于精英反向和纵横交叉的鲸鱼优化算法[J].小型微型计算机系统,2020,41(10):2092-2097. DOI: 10.3969/j.issn.1000-1220.2020.10.012.
[21] BABU S S, JAYASUDHA K. A simplex method-based bacterial colony optimization algorithm for data clustering analysis[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(12): 2259027. DOI: 10.1142/S0218001422590273.
[1] XIAO Zhiheng, LIU Huijia. Improved TOPSIS for Node Vulnerability Assessment of Distribution Network Based on Game Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 20-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .