Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 166-174.doi: 10.16088/j.issn.1001-6600.2023070603

Previous Articles     Next Articles

Co3ZnC@C Promoting the Photocatalytic Hydrogen Production of g-C3N4 and Its Mechanism

ZHOU Xunfu1*, ZHOU Xiaosong1, LUO Jin1, XU Limei1, FANG Yueping2*   

  1. 1. School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang Guangdong 524048, China;
    2. College of Materials and Energy, South China Agricultural University, Guangzhou Guangdong 510642, China
  • Received:2023-07-06 Revised:2023-08-16 Published:2024-04-22

Abstract: Photocatalytic hydrogen production technology is an effective way to realize the conversion of solar energy to green hydrogen energy, but its practical application is limited by its high cost and low efficiency. Here, a kind of carbon-coated Co3ZnC nanoparticle (Co3ZnC@C) was synthesized by a simple precipitation-calcination method. As a cocatalyst, Co3ZnC@C was coupled with photocatalyst g-C3N4 to construct a noble metal-free composite photocatalyst Co3ZnC@C/g-C3N4. The experimental results show that the photocatalytic hydrogen production rate of Co3ZnC@C/g-C3N4 is 109 times higher than that of g-C3N4, because Co3ZnC@C, as a co-catalyst supported on the surface of g-C3N4, can improve the charge separation efficiency and accelerate the surface hydrogen evolution reaction rate. The research broadens the application range of metal carbide materials and provides a new way for the design of advanced solar energy conversion photocatalysts.

Key words: zinc cobalt carbide, carbon nitride, composite material, photocatalytic hydrogen evolution, co-catalyst

CLC Number:  O643.36; O644.1; TQ116.2
[1] HUANG W L, DAI J, XIONG L H. Towards a sustainable energy future: factors affecting solar-hydrogen energy production in China[J]. Sustainable Energy Technologies and Assessments, 2022, 52(Part A): 102059. DOI: 10.1016/j.seta.2022.102059.
[2] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI: 10.1038/238037a0.
[3] 闫瑞晗, 邓细宇, 沈丛丛, 等. 用于分解水制氢的g-C3N4光催化剂的改性研究进展[J]. 化工新型材料. 2022, 50(12): 56-60. DOI: 10.19817/j.cnki.issn1006-3536.2022.12.011.
[4] FU J W, YU J G, JIANG C J, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 201701503. DOI: 10.1002/aenm.201701503.
[5] 粟阳藩, 吴林珍, 李依林, 等. Ⅱ型TiO2/g-C3N4异质结的构筑促进高效光催化U(Ⅵ)还原[J]. 无机化学学报, 2023, 39(4): 689-698. DOI: 10.11862/CJIC.2023.029.
[6] HASNAN N S N, MOHAMED M A, MOHD HIR Z A. Surface physicochemistry modification and structural nanoarchitectures of g-C3N4 for wastewater remediation and solar fuel generation[J]. Advanced Materials Technologies, 2022, 7(5): 2100993. DOI: 10.1002/admt.202100993.
[7] 刘俊琛, 黄浩然, 葛春玉, 等. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456. DOI: 10.16088/j.issn.1001-6600.2021123007.
[8] ZHU Q H, XU Z H, QIU B C, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021, 17(40): 2101070. DOI: 10.1002/smll.202101070.
[9] WANG J L, WANG S Z. A critical review on graphitic carbon nitride(g-C3N4)-based materials: preparation, modification and environmental application[J]. Coordination Chemistry Reviews, 2022, 453: 214338. DOI: 10.1016/j.ccr.2021.214338.
[10] TAKANABE K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design[J]. ACS Catalysis, 2017, 7: 8006-8022. DOI: 10.1021/acscatal.7b02662.
[11] XU Q L, CHENG B, YU J G, et al. Making Co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst[J]. Carbon, 2017, 118: 241-249. DOI:10.1016/j.carbon.2017.03.052.
[12] ZHU Y Q, WANG T, XU T, et al. Size effect of Pt Co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution[J]. Applied Surface Science, 2019, 464: 36-42. DOI: 10.1016/j.apsusc.2018.09.061.
[13] GÜY N. Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production[J]. Applied Surface Science, 2020, 522: 146442. DOI: 10.1016/j.apsusc.2020.146442.
[14] MASIH D, MA Y Y, ROHANI S. Graphitic C3N4 based noble-metal-free photocatalyst systems: a review[J]. Applied Catalysis B: Environmental, 2017, 206(5): 556-588. DOI:10.1016/j.apcatb.2017.01.061.
[15] 郭俊兰,梁英华,王欢,等.光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114. DOI: 10.7536/PC200803.
[16] ZHOU X F, TIAN Y H, LUO J, et al. MoC quantum Dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: from electrocatalysis to photocatalysis[J]. Advanced Functional Materials, 2022, 32(27): 2201518. DOI: 10.1002/adfm.202201518.
[17] ZHOU X F, WANG P, LI M, et al. Synergistic effect of phosphorus doping and MoS2 Co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting[J]. Journal of Materials Science & Technology, 2023, 158: 171-179. DOI: 10.1016/j.jmst.2023.02.041.
[18] ZHOU X F, ZHU Y T, GAO Q Z, et al. Modified graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. ChemSusChem, 2019, 12(22): 4996-5006. DOI: 10.1002/cssc.201901960.
[19] LIN Z Z, WANG X C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angewandte Chemie International Edition, 2013, 52(6): 1735-8. DOI: 10.1002/anie.201209017.
[20] ZHOU X F, FANG Y X, CAI X, et al. In situ photodeposited construction of Pt-CdS/g-C3N4-MnOx composite photocatalyst for efficient visible-light-driven overall water splitting[J]. ACS Applied Materials and Interfaces, 2020, 12(18): 20579-20588. DOI: 10.1021/acsami.0c04241.
[21] WANG C X, ZHANG W J, FAN J, et al. S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution[J]. Ceramics International, 2021, 47(21): 30194-30202. DOI: 10.1016/j.ceramint.2021.07.199.
[22] ZHANG Y P, JIN Z L, LUAN A, et al. Charge transfer behaviors over MOF-5@g-C3N4 with NixMo1-xS2 modification[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9914-9923. DOI: 10.1016/j.ijhydene.2018.04.071.
[23] XU X J, SI Z C, LIU L P, et al. CoMoS2/rGO/C3N4 ternary heterojunctions catalysts with high photocatalytic activity and stability for hydrogen evolution under visible light irradiation[J]. Applied Surface Science, 2018, 435: 1296-1306. DOI: 10.1016/j.apsusc.2017.12.001.
[24] FAN K, JIN Z L, YANG H, et al. Promotion of the excited electron transfer over Ni- and Co-sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1-xS2) for hydrogen production under visible light irradiation[J]. Scientific Reports, 2017, 7(1): 7710. DOI: 10.1038/s41598-017-08163-y.
[25] JIANG K R, IQBAL W, YANG B, et al. Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution[J]. Journal of Alloys and Compounds, 2021, 853: 157284. DOI: 10.1016/j.jallcom.2020.157284.
[26] JIANG L S, WANG K, WU X Y, et al. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photocatalytic hydrogen evolution performance of graphitic carbon nitride: efficient interfacial charge transfer[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26898-26908. DOI: 10.1021/acsami.9b07311.
[27] DONG J, SHI Y, HUANG C P, et al. A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2019, 243: 27-35. DOI: 10.1016/j.apcatb.2018.10.016.
[28] GELDERMAN K, LEE L, DONNE S W. Flat-band potential of a semiconductor: using the mott-schottky equation[J]. Journal of Chemical Education, 2007, 84: 685. DOI: 10.1021/ed084p685.
[29] ISHIKAWA A, TAKATA T, KONDO J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm)[J]. Journal of the American Chemical Society, 2002, 124(45): 13547-13553. DOI: 10.1021/ja0269643.
[30] LI P, ZHUANG Z H, DU C, et al. Insights into the Mo-doping effect on the electrocatalytic performance of hierarchical CoxMoyS nanosheet arrays for hydrogen generation and urea oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40194-40203. DOI:10.1021/acsami.0c06716.
[1] CHEN Fukun, CHEN Xingxing. Research Progress of α-Fe2O3-Based Z-Scheme Heterojunction Photocatalysts [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 12-24.
[2] ZHAO Dongjiang, MA Songyan, TIAN Xiqiang. Applications of CoSe2/C Catalyst in Electrocatalytic Oxygen Reduction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 30-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[2] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[3] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[4] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[5] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[6] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[7] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69 -83 .
[8] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[9] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[10] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .