Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (1): 25-33.doi: 10.16088/j.issn.1001-6600.2018.01.004

Previous Articles     Next Articles

The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model

LIN Yue1,2,LIU Tingzhang 1*,CHEN Yifan1,JIN Yong3,LIANG Lixin3   

  1. 1. College of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China;
    2. College of Marine Communication Engineering,Hainan Tropical Ocean University,Sanya Hainan 572022,China;
    3. Shanghai International Automobile City GroupCo. Ltd., Shanghai 201805, China
  • Received:2017-06-08 Online:2018-01-20 Published:2018-07-17

Abstract: Affinity propagation (AP) of uncertainty hidden Markov model (HMM) and statistical clustering method are the two commonly used methods for fault diagnosis of equipment. However, since the structure of a electric car charging pile is complex and there are few fault samples on it, the above two methods are not ideal for fault diagnosis. According to the characteristics of charging pile with fault diagnosis, taking into account the AP clustering fast and accurate fault feature extraction and HMM powerful capability of fault classification, a fault diagnosis method of charging pile is presented based on AP-HMM hybrid model in this paper. At the same time, in order to discuss the long-term nature of the charging pile, the Markov equilibrium equations are used to obtain the stable probability of fault. The experimental results verify the correctness of the above theoretical analysis, and the results show that the AP-HMM hybrid model has the advantage of high diagnostic accuracy compared with the traditional model. The hybrid model proposed in this paper has certain feasibility and universality, and can be applied to the fault diagnosis of other electronic equipments with low speed and high precision.

Key words: affinity propagation clustering, hidden Markov model, charging piles;stable distribution, fault diagnosis

CLC Number: 

  • TP274
[1] 章博文,李显君,闫旭.专利视角下中美电动汽车技术发展比较分析[J].哈尔滨工业大学学报,2017,49(7):86-92.
[3] 钱立军,赵明宇,张卫国.一种电动汽车充电安全预警模型设计方法[J].电网与清洁能源,2016,32(12):114-119.
[3] 徐亚森,王仲生,姜洪开.基于能量演化的航空发动机故障预示模型设计[J].测控技术,2012,31(8):140-143.
[4] 姜毅,郑宽馀,石亚伟,等.双馈风力发电机的建模与故障状态研究[J].西南师范大学学报,2014,39(4):152-158.
[5] 石东院,熊国江,陈金富,等.基于径向基函数神经网络和模糊积分融合的电网分区故障诊断[J].中国电机工程学报,2014,34(4):562-569.
[6] 林已杰,赖清,周敏.基于BP神经网络和马尔可夫模型的服务器软件老化预测方法[J].西南师范大学学报,2011,36(4):193-197.
[7] FREY B,DUECK D. Clustering by passing messages between data points[J].Science,2007,315(5814):972-976.
[8] 苗强.基于隐马尔可夫模型的故障诊断系统研究[J].航空学报,2005,26(5):642-646.
[9] 唐飞,王波,查晓明,等.基于双阶段并行隐马尔可夫模型的电力系统暂态稳定评估[J].中国电机工程学学报,2013,33(10):91-97.
[10] 邓勇,师奕兵,张伟.基于FRWT的模拟电路早期故障诊断[J].仪器仪表学报,2012,33(3):555-560.
[11] ATLAS L,OSTENDORF M,BERNARD G D. Hidden Markov models for monitoring machining tool-wear[C]//IEEE ICASSP 2000. Piscataway, NJ:IEEE Press, 2000:3887-3890.
[12] OCAK H,LOPARO K A.A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]//IEEE ICASSP 2001. Piscataway, NJ:IEEE Press, 2001:3141-3144.
[13] 李丽敏,王仲生,姜洪开.基于相似性传播聚类的航空发动机突发故障诊断[J].振动与冲击,2014,33(1):52-55.
[14] 郑国忠,童行伟.概率导论[M].北京:人民邮电出版社,2009:300-303.
[15] BAUM L E,PETRIE T. Statistical inference for probabilistic function of finite state Markov chains[J].The Annals of Mathematical Statistics,1996,47(6):1554-1563.
[16] 刘韬.基于隐马尔可夫模型与信息融合的设备故障诊断与性能退化评估研究[D].上海:上海交通大学,2013:58-66.
[1] WANG Xun, LUO Xiaoshu. Adaptive Variable Step Search Algorithm to Adjustthe Focus Based on Image Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 25-31.
[2] LIU Huimin, GUAN Dongjie, ZHANG Mengjie. Stress Factorsand Stress Mechanism on Subsequent Developmentof Ecological Security in the Three Gorges Reservoir Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 150-158.
[3] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20-26.
[4] SU Cheng, CHEN Wen-na, ZHOU Ling, HUANG Dong-mei. Mechanism of Multi-agent Task Allocation for Ocean Spatial Data Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 205-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!