Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 82-90.doi: 10.16088/j.issn.1001-6600.2021060907

Previous Articles     Next Articles

Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model

SUN Ye, JIANG Jingjing, WANG Chunjie*   

  1. School of Mathematics and Statistics, Changchun University of Technology, Changchun Jilin 130012, China
  • Received:2021-06-09 Revised:2021-07-31 Online:2022-01-25 Published:2022-01-24

Abstract: The generalized extreme value distribution has attracted the attention of many scholars since it was proposed. It can be used to fit life data and is widely used in the fields of medical sciences, engineering and meteorology. In this paper, the Bayesian regression analysis under the three-parameter generalized extreme value model is studied under the current status data. Based on the location parameter of generalized extreme value distribution, the covariate are introduced, the Bayesian regression model of location parameter and survival time are established, and the MCMC method combining with Gibbs sampling and MH algorithm is used to draw sample from the posterior distribution of each parameter. The means of the posterior samples are used as the estimated value of the parameters. R software is used for numerical simulation to compare the performance of maximum likelihood estimation and Bayesian estimation, which illustrates that the parametric survival regression model fits the data well. Simulation results indicate that Bayesian estimation outperforms the maximum likelihood estimation. Finally, this method is applied to the lung tumor data of 144 male RFM mice, and some results are obtained.

Key words: current status data, generalized extreme value distribution, maximum likelihood estimation, Bayesian estimation, MCMC algorithm

CLC Number: 

  • O212.8
[1] 彭非, 王伟. 生存分析[M]. 北京:中国人民大学出版社, 2004: 62-64.
[2]史道济. 实用极值统计方法[M]. 天津:天津科学技术出版社, 2006: 8-13.
[3]李群, 董小刚, 王纯杰, 等. 广义指数分布下区间删失数据贝叶斯回归分析[J]. 长春工业大学学报(自然科学版), 2016, 37(6): 597-602.
[4]PRESCOTT P, WALDEN A T. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution[J]. Biometrika, 1980, 67(3): 723-724.
[5]PRESCOTT P, WALDEN A T. Maximum likeiihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples[J]. Journal of Statistical Computation and Simulation, 1983, 16(3/4): 241-250.
[6]李秀敏, 蔡霞. 广义极值分布参数的Bayes估计[C]//中国灾害防御协会风险分析专委会第3届年会论文集. 广州: 中国灾害防御协会, 2008:29-34.
[7]MARKOSE S, ALENTORN A. Thegeneralized extreme value distribution, implied tail Index, and option pricing[J]. The Journal of Derivatives, 2011, 18(3): 35-60.
[8]鲁帆, 严登华. 基于广义极值分布和Metropolis-Hastings抽样算法的贝叶斯MCMC洪水频率分析方法[J]. 水利学报, 2013, 44(8): 942-949.
[9]樊利利, 王艳永. 广义极值分布的参数估计及实例分析[J]. 首都师范大学学报(自然科学版), 2017, 38(3): 13-18.
[10]吴云标, 迟艺侠. 基于贝叶斯MCMC方法的洪水频率分析及不确定性评估[J]. 安徽工业大学学报(自然科学版), 2018, 35(1): 66-72.
[11]NASEEF T M, KUMAR V S, JOSEPH J, et al. Uncertainties of the 50-year wave height estimation using generalized extreme value and generalized Pareto distributions in the Indian Shelf seas[J]. Natural Hazards, 2019, 97(3): 1231-1251.
[12]AGUIRRE-SALADO A I, AGUIRRE-SALA C A, ALVARADO E, et al. On the smoothing of the generalized extreme value distribution parameters using penalized maximum likelihood: a case study on UVB radiation maxima in the mexico city metropolitan area[J]. Mathematics, 2020, 8(3): 329.
[13]RYPKEMA D, TULJAPURKAR S. Chapter 2-Modeling extreme climatic events using the generalized extreme value (GEV) distribution[J]. Handbook of Statistics, 2021, 44(1): 39-71.
[14]SAMPAIO J, COSTA V. Bayesian regional flood frequency analysis with GEV hierarchical models under spatial dependency structures[J]. Hydrological Sciences Journal,2021, 66(3):422-433.
[15]YOON S, CHO W, HEO J H, et al. A full Bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(5): 761-770.
[16]HOEL D G, WALBURG H E Jr. Statistical analysis of survival experiments[J]. Journal of the National Cancer Institute, 1972, 49(2):361-372.
[17]SUN J G. The statistical analysis of interval-censored failure time data[M]. New York: Springer, 2006.
[1] KONG Lingtao, SONG Xiangjun, WANG Xiaomin. Sample Size Determination for the Additive Hazards Model with Current Status Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 187-194.
[2] LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205.
[3] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78.
[4] YANG Xiaowei, ZHANG Junjian. Law of Iterated Logarithm and Strong Consistency for Negative Binomial Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 59-69.
[5] DING Xin-yue, XU Mei-ping. Bayesian Estimation for Scale Parameter of Inverse Gamma Distribution under Mlinex Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[2] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[3] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[4] TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12 -19 .
[5] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20 -26 .
[6] WEI Zhenhan, SONG Shuxiang, XIA Haiying. State-of-charge Estimation Using Random Forest for Lithium Ion Battery[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 27 -33 .
[7] XU Yuanjing, HU Weiping. Identification of Pathological Voice of Different Levels Based on Random Forest[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 34 -41 .
[8] ZHANG Canlong, SU Jiancai, LI Zhixin, WANG Zhiwen. Infrared-Visible Target Tracking Basedon AdaBoost Confidence Map[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 42 -50 .
[9] LIU Dianting, WU Lina. Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 51 -58 .
[10] JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59 -66 .