Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 15-29.doi: 10.16088/j.issn.1001-6600.2021060908
Previous Articles Next Articles
BAI Defa1, XU Xin2, WANG Guochang2*
CLC Number:
[1] JAMES G M, HASTIE T J. Functional linear discriminant analysis for irregularly sampled curves[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2001, 63(3): 533-550. [2]SILVERMAN B W. Smoothed functional principal components analysis by choice of norm[J]. The Annals of Statistics, 1996, 24(1): 1-24. [3]RAMSAY J O, DALZELL C J. Some tools for functional data analysis[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1991, 53(3): 539-561. [4]GRENANDER U. Stochastic processes and statistical inference[J]. Arkiv för Matematik, 1950, 1(3): 195-277. [5]RAO C R. Some statistical methods for comparison of growth curves[J]. Biometrics, 1958, 14(1): 1-17. [6]ZIPUNNIKOV V, GREVEN S, SHOU H C, et al. Longitudinal high-dimensional principal components analysis with application to diffusion tensor imaging of multiple sclerosis[J]. The Annals of Applied Statistics, 2014, 8(4): 2175-2202. [7]XIAO L, ZIPUNNIKOV V, RUPPERT D, et al. Fast covariance estimation for high-dimensional functional data[J]. Statistics and Computing, 2016, 26: 409-421. [8]王德青,朱建平,刘晓葳,等.函数型数据聚类分析研究综述与展望[J].数理统计与管理,2018,37(1):51-63. [9]XUE K J, YAO F. Distribution and correlation-free two-sample test of high-dimensional means[J]. The Annals of Statistics, 2020, 48(3): 1304-1328. [10]RAMSAY J O, SILVERMAN B W. Functional data analysis[M]. New York: Springer, 2005: 147-172. [11]RAMSAY J, HOOKER G, GRAVES S. Functional data analysis with R and MATLAB[M]. New York: Springer, 2009: 1-2. [12]FERRATY F, VIEU P. Nonparametric functional data analysis: theory and practice[M]. New York: Springer, 2006. [13]HALL P, YANG Y J. Ordering and selecting components in multivariate or functional data linear prediction[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2010, 72(1): 93-110. [14]DELAIGLE A, HALL P. Achieving near perfect classification for functional data[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2012, 74(2): 267-286. [15]YUAN M, CAI T T. A reproducing kernel Hilbert space approach to functional linear regression[J]. The Annals of Statistics, 2010, 38(6): 3412-3444. [16]CAI T T, HALL P. Prediction in functional linear regression[J]. The Annals of Statistics, 2006, 34(5): 2159-2179. [17]CAI T T, YUAN M. Adaptive covariance matrix estimation through block thresholding[J]. The Annals of Statistics, 2012, 40(4): 2014-2042. [18]CHIOU J M, MÜLLER H G, WANG J L, et al. A functional multiplicative effects model for longitudinal data, with application to reproductive histories of female medflies[J]. Statistica Sinica, 2003, 13(4): 1119-1133. [19]CHIOU J M, MÜLLER H G, WANG J L. Functional quasi-likelihood regression models with smooth random effects[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2003, 65(2): 405-423. [20]YAO F, MÜLLER H G, WANG J L. Functional linear regression analysis for longitudinal data[J]. The Annals of Statistics, 2005, 33(6): 2873-2903. [21]YAO F, MÜLLER H G. Functional quadratic regression[J]. Biometrika, 2010, 97(1): 49-64. [22]HE G, MÜLLER H G, WANG J L, et al. Functional linear regression via canonical analysis[J]. Bernoulli, 2010, 16(3): 705-729. [23]ŞENTÜRK D. MÜLLER H G. Functional varying coefficient models for longitudinal data[J]. Journal of the American Statistical Association, 2010, 105(491): 1256-1264. [24]MÜLLER H G, YAO F. Additive modelling of functional gradients[J]. Biometrika, 2010, 97(4): 791-805. [25]WANG J L, CHIOU J M, MÜLLER H G. Functional data analysis[J]. Annual Review of Statistics and Its Application, 2016, 3: 257-295. [26]ASH R B, GARDNER M F. Topics in stochastic processes[J]. Bulletin of the American Mathematical Society, 1976, 82: 817-820. [27]HORVÁTH L, KOKOSZKA P. Inference for functional data with applications[M]. New York: Springer, 2012. [28]ZHANG H Z, WANG F Q, CHEN Y, et al. Sample pair based sparse representation classification for face recognition[J]. Expert Systems with Applications, 2016, 45: 352-358. [29]DAI X T, MÜLLER H G. Principal component analysis for functional data on Riemannian manifolds and spheres[J]. The Annals of Statistics, 2018, 46(6B): 3334-3361. [30]LIN Z H, YAO F. Intrinsic Riemannian functional data analysis[J]. The Annals of Statistics, 2019, 47(6): 3533-3577. [31]LIN T Y, FAN C Y, HO N, et al. Projection robust Wasserstein distance and Riemannian optimization[C]//34th Conference on Neural Information Processing Systems (NeurIPS 2020). Vancouver: NeurIPS, 2020: 1-15. [32]ZHU H T, FAN J Q, KONG L L. Spatially varying coefficient model for neuroimaging data with jump discontinuities[J]. Journal of the American Statistical Association, 2014, 109(507): 1084-1098. [33]GOLDSMITH J, HUANG L, CRAINICEANU C M. Smooth scalar-on-image regression via spatial Bayesian variable selection[J]. Journal of Computational and Graphical Statistics, 2014, 23(1): 46-64. [34]WANG X J, NAN B, ZHU J, et al. Regularized 3D functional regression for brain image data via Haar wavelets[J]. The Annals of Applied Statistics, 2014, 8(2): 1045-1064. [35]YAO F, MÜLLER H G, WANG J L. Functional data analysis for sparse longitudinal data[J]. Journal of the American Statistical Association, 2005, 100(470): 577-590. [36]PENG J, PAUL D. A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data[J]. Journal of Computational and Graphical Statistics, 2009, 18(4): 995-1015. [37]CHEN K H, LEI J. Localized functional principal component analysis[J]. Journal of the American Statistical Association, 2015, 110(511): 1266-1275. [38]LEURGANS S E, MOYEED R A, SILVERMAN B W. Canonical correlation analysis when the data are curves[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1993, 55(3): 725-740. [39]HE G Z, MÜLLER H G, WANG J L. Functional canonical analysis for square integrable stochastic processes[J]. Journal of Multivariate Analysis, 2003, 85(1): 54-77. [40]HE G Z, MÜLLER H G, WANG J L. Methods of canonical analysis for functional data[J]. Journal of Statistical Planning and Inference, 2004, 122(1/2): 141-159. [41]CARDOT H, FERRATY F, SARDA P. Functional linear model[J]. Statistics & Probability Letters, 1999, 45(1): 11-22. [42]CARDOT H, FERRATY F, SARDA P. Spline estimators for the functional linear model[J]. Statistica Sinica, 2003, 13(3): 571-591. [43]MÜLLER H G, YAO F. Functional additive models[J]. Journal of the American Statistical Association, 2008, 103(484): 1534-1544. [44]WANG Q, YIN X R. Aggregate inverse mean estimation for sufficient dimension reduction[J]. Technometrics, 2021, 63(4): 456-465. [45]FARAWAY J J. Regression analysis for a functional response[J]. Technometrics, 1997, 39(3): 254-261. [46]SHEN Q, FARAWAY J. An F test for linear models with functional responses[J]. Statistica Sinica, 2004, 14(4): 1239-1257. [47]YANG Y H. Consistency of cross validation for comparing regression procedures[J]. The Annals of Statistics, 2007, 35(6): 2450-2473. [48]FAN J, ZHANG J T. Two-step estimation of functional linear models with applications to longitudinal data[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2000, 62(2): 303-322. [49]FERRATY F, MAS A, VIEU P. Nonparametric regression on functional data: inference and practical aspects[J]. Australian & New Zealand Journal of Statistics, 2007, 49(3): 267-286. [50]JAMES G M, SILVERMAN B W. Functional adaptive model estimation[J]. Journal of the American Statistical Association, 2005, 100(470): 565-576. [51]CHEN D, HALL P, MÜLLER H G. Single and multiple index functional regression models with nonparametric link[J]. The Annals of Statistics, 2011, 39(3): 1720-1747. [52]AIT-SAïDI A, FERRATY F, KASSA R, et al. Cross-validated estimations in the single-functional index model[J]. Statistics, 2008, 42(6): 475-494. [53]WANG Q, XUE Y. An ensemble of inverse moment estimators for sufficient dimension reduction[J]. Computational Statistics & Data Analysis, 2021, 161: 107241. [54]WANG G C, LIAN H. Functional sliced inverse regression in a reproducing kernel Hilbert space: a theoretical connection to functional linear regression[J]. Statistica Sinica, 2020, 30: 17-33. [55]WANG G C, LIN N, ZHANG B X. Functional contour regression[J]. Journal of Multivariate Analysis, 2013, 116: 1-13. [56]LIAN H. Shrinkage estimation and selection for multiple functional regression[J]. Statistica Sinica, 2013, 23(1): 51-74. [57]FERRÉ L, YAO A F. Smoothed functional inverse regression[J]. Statistica Sinica, 2005, 15(3): 665-683. [58]FERRÉ L, YAO A F. Functional sliced inverse regression analysis[J]. Statistics, 2003, 37(6): 475-488. [59]DU J, SUN X Q, CAO R Y, et al. Statistical inference for partially linear additive spatial autoregressive models[J]. Spatial Statistics, 2018, 25: 52-67. [60]YU P, DU J, ZHANG Z Z. Varying-coefficient partially functional linear quantile regression models[J]. Journal of the Korean Statistical Society, 2017, 46(3): 462-475. [61]KONG D H, STAICU A M, MAITY A. Classical testing in functional linear models[J]. Journal of Nonparametric Statistics, 2016, 28(4): 813-838. [62]ZHOU J J, CHEN M. Spline estimators for semi-functional linear model[J]. Statistics & Probability Letters, 2012, 82(3): 505-513. [63]BOSQ D. Linear processes in function spaces: theory and applications[M]. New York: Springer, 2000: 127-145. [64]HÖRMANN S, HORVÁTH L, REEDER R. A functional version of the ARCH model[J]. Econometric Theory, 2013, 29(2): 267-288. [65]ENGLE R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007. [66]AUE A, HORVÁTH L, PELLATT D F. Functional generalized autoregressive conditional heteroskedasticity[J]. Journal of Time Series Analysis, 2017, 38(1): 3-21. [67]BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. [68]MÜLLER H G, SEN R, STADTMÜLLER U. Functional data analysis for volatility[J]. Journal of Econometrics, 2011, 165(2): 233-245. [69]HORVÁTH L, KOKOSZKA P, RICE G. Testing stationarity of functional time series[J]. Journal of Econometrics, 2014, 179(1): 66-82. [70]KOKOSZKA P, MIAO H, REIMHERR M, et al. Dynamic functional regression with application to the cross-section of returns[J]. Journal of Financial Econometrics, 2018, 16(3): 461-485. [71]DETTE H, KOKOT K, VOLGUSHEV S. Testing relevant hypotheses in functional time series via self-normalization[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2020, 82(3): 629-660. [72]李因果,戴翼,何晓群.基于自适应权重的面板数据聚类方法[J].系统工程理论与实践,2013,33(2):388-395. [73]朱建平,陈民恳.面板数据的聚类分析及其应用[J].统计研究,2007,24(4):11-14. [74]李因果,何晓群.面板数据聚类方法及应用[J].统计研究,2010,27(9):73-79. [75]王德青,朱建平,王洁丹.基于自适应权重的函数型数据聚类方法研究[J].数理统计与管理,2015,34(1):84-92. [76]王德青,刘晓葳,朱建平.函数型自适应权重聚类分析的再拓展[J].数理统计与管理,2016,35(1):81-88. [77]王劼,黄可飞,王惠文.一种函数型数据的聚类分析方法[J].数理统计与管理,2009,28(5):839-844. [78]CHIOU J M, LI P L. Correlation-based functional clustering via subspace projection[J]. Journal of the American Statistical Association, 2008, 103(484): 1684-1692. [79]GARCIA-ESCUDERO L A. GORDALIZA A. A proposal for robust curve clustering[J]. Journal of Classification, 2005, 22(2): 185-201. [80]SERBAN N, WASSERMAN L. CATS: clustering after transformation and smoothing[J]. Journal of the American Statistical Association, 2005, 100(471): 990-999. [81]CHIOU J M, LI P L. Functional clustering and identifying substructures of longitudinal data[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2007, 69(4): 679-699. [82]ABRAHAM C, CORNILLON P A, MATZNER-LØBER E, et al. Unsupervised curve clustering using B-splines[J]. Scandinavian Journal of Statistics, 2003, 30(3): 581-595. [83]HECKMAN N E, ZAMAR R H. Comparing the shapes of regression functions[J]. Biometrika, 2000, 87(1): 135-144. [84]TARPEY T, KINATEDER K K J. Clustering functional data[J]. Journal of Classification, 2003, 20(1): 93-114. [85]靳刘蕊.基于变化趋势相异性的金融时间序列函数聚类分析[J].经济经纬,2010(2):66-69. [86]IEVA F, PAGANONI A M, PIGOLI D, et al. Multivariate functional clustering for the morphological analysis of electrocardiograph curves[J]. Journal of the Royal Statistical Society Series C-Applied Statistics, 2013, 62(3): 401-418. [87]DELAIGLE A, HALL P. Defining probability density for a distribution of random functions[J]. The Annals of Statistics, 2010, 38(2): 1171-1193. [88]HEARD N A, HOLMES C C, STEPHENS D A. A quantitative study of gene regulation involved in the immune response of Anopheline mosquitoes: an application of Bayesian hierarchical clustering of curves[J]. Journal of the American Statistical Association, 2006, 101(473): 18-29. [89]PETERSEN A, MÜLLER H G. Functional data analysis for density functions by transformation to a Hilbert space[J]. The Annals of Statistics, 2016, 44(1): 183-218. [90]RAMSAY J O, RAMSEY J B. Functional data analysis of the dynamics of the monthly index of nondurable goods production[J]. Journal of Econometrics, 2002, 107(1/2): 327-344. [91]FERRATY F, LAKSACI A, TADJ A, et al. Rate of uniform consistency for nonparametric estimates with functional variables[J]. Journal of Statistical Planning and Inference, 2010, 140(2): 335-352. [92]JAMES G M. Generalized linear models with functional predictors[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2002, 64(3): 411-432. [93]ESCABIAS M, AGUILERA A M, VALDERRAMA M J. Principal component estimation of functional logistic regression: discussion of two different approaches[J]. Journal of Nonparametric Statistics, 2004, 16(3/4): 365-384. [94]CARDOT H, SARDA P. Estimation in generalized linear models for functional data via penalized likelihood[J]. Journal of Multivariate Analysis, 2005, 92(1): 24-41. [95]MÜLLER H G, STADTMÜLLER U. Generalized functional linear models[J]. The Annals of Statistics, 2005, 33(2): 774-805. [96]ESCABIAS M, AGUILERA A M, VALDERRAMA M J. Modeling environmental data by functional principal component logistic regression[J]. Environmetrics, 2005, 16(1): 95-107. [97]ESCABIAS M, AGUILERA A M, VALDERRAMA M J. Functional PLS logit regression model[J]. Computational Statistics & Data Analysis, 2007, 51(10): 4891-4902. [98]AGUILERA A M, ESCABIAS M, VALDERRAMA M J. Discussion of different logistic models with functional data. Application to systemic lupus erythematosus[J]. Computational Statistics & Data Analysis, 2008, 53(1): 151-163. [99]ZHU H X. A functional generalized linear model with curve selection in cervical pre-cancer diagnosis using Fluorescence spectroscopy[C]// Institute of Mathematical Statistics. Institute of Mathematical Statistics lecture notes:monograph series. Beachwood: Institute of Mathematical Statistics, 2009: 173-189. [100]GERTHEISS J, MAITY A, STAICU A M. Variable selection in generalized functional linear models[J]. Stat, 2013, 2(1): 86-101. [101]MCLEAN M W, HOOKER G, STAICU A M, et al. Functional generalized additive models[J]. Journal of Computational and Graphical Statistics, 2014, 23(1): 249-269. [102]MATSUI H. Variable and boundary selection for functional data via multiclass logistic regression modeling[J]. Computational Statistics & Data Analysis, 2014, 78: 176-185. [103]FAN R Z, WANG Y F, MILLS J L, et al. Generalized functional linear models for gene-based case-control association studies[J]. Genetic Epidemiology, 2014, 38(7): 622-637. [104]SHANG Z F, CHENG G. Nonparametric inference in generalized functional linear models[J]. The Annals of Statistics, 2015, 43(4): 1742-1773. [105]FAN R Z, WANG Y F, BOEHNKE M, et al. Gene level meta-analysis of quantitative traits by functional linear models[J]. Genetics, 2015, 200(4): 1089-1104. [106]JADHAV S, KOUL H L, LU Q. Miscellanea dependent generalized functional linear models[J]. Biometrika, 2017, 104(4): 987-994. [107]SCHEFFLER A W, TELESCA D, SUGAR C A, et al. Covariate-adjusted region-referenced generalized functional linear model for EEG data[J]. Statistics in Medicine, 2019, 38(30): 5587-5602. [108]ZHANG H L, ZOU G H. Cross-validation model averaging for generalized functional linear model[J]. Econometrics, 2020, 8(1): 7. [109]STONE C J. Consistent nonparametric regression[J]. The Annals of Statistics, 1977, 5(4): 595-620. [110]DEVROYE L, LUGOSI G. A universally acceptable smoothing factor for kernel density estimates[J]. The Annals of Statistics, 1996, 24(6): 2499-2512. [111]FERRATY F, VIEU P. Curves discrimination: a nonparametric functional approach[J]. Computational Statistics & Data Analysis, 2003, 44(1/2): 161-173. [112]BIAU G, BUNEA F, WEGKAMP M H. Functional classification in Hilbert spaces[J]. IEEE Transactions on Information Theory, 2005, 51(6): 2163-2172. [113]LENG X Y, MÜLLER H G. Classification using functional data analysis for temporal gene expression data[J]. Bioinformatics, 2006, 22(1): 68-76. [114]ABRAHAM C, BIAU G, CADRE B. On the kernel rule for function classification[J]. Annals of the Institute of Statistical Mathematics, 2006, 58(3): 619-633. [115]ROSSI F, VILLA N. Support vector machine for functional data classification[J]. Neurocomputing, 2006, 69(7/9): 730-742. [116]WANG X H, RAY S, MALLICK B K. Bayesian curve classification using wavelets[J]. Journal of the American Statistical Association, 2007, 102(479): 962-973. [117]PREDA C, SAPORTA G, LÉVÉDER C. PLS classification of functional data[J]. Computational Statistics, 2007, 22(2): 223-235. [118]GOMEZ-VERDEJO V, ARENAS-GARCIA J, FIGUEIRAS-VIDAL A R. A dynamically adjusted mixed emphasis method for building boosting ensembles[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 3-17. [119]ROSSI F, VILLA N. Recent advances in the use of SVM for functional data classification[C]//Functional and Operatorial Statistics. Heidelberg: Physica-Verlag HD, 2008: 273-280. [120]LI B, YU Q. Classification of functional data: a segmentation approach[J]. Computational Statistics & Data Analysis, 2008, 52(10): 4790-4800. [121]BERLINET A, BIAU G, ROUVIERE L. Functional supervised classification with wavelets[J]. Annales de l’ISUP, 2008, 52(21):61-80. [122]RABAOUI A, KADRI H, DAVY M. Nonparametric Bayesian supervised classification of functional data[C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Kyoto: IEEE, 2012: 3381-3384. [123]CHANG C, CHEN Y K, OGDEN R T. Functional data classification: a wavelet approach[J]. Computational Statistics, 2014, 29(6): 1497-1513. [124]BERRENDERO J R, CUEVAS A, TORRECILLA J L. Variable selection in functional data classification: a maxima-hunting proposal[J]. Statistica Sinica, 2016, 26(2): 619-638. [125]DARABI N, HOSSEINI-NASAB S M E. Projection-based classification for functional data[J]. Statistics, 2020, 54(3): 544-558. |
[1] | YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57-67. |
[2] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
[3] | XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50. |
[4] | SU Lei, LI Junying. Discussion on Classification Standard of Eco-environment Quality in Counties of National Key Eco-functional Areas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 196-202. |
[5] | WU Hao, QIN Lichun, LUO Liurong. Improving Classification Rule with Lift Measure for KNN Classifier [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 75-81. |
[6] | YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49. |
[7] | NIE Yu, LIAO Xiangwen, WEI Jingjing, YANG Dingda, CHEN Guolong. Multi-label Classification Based on the Deep Autoencoder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 71-79. |
[8] | YU Chunqiang, DENG Fangzhou, ZHANG Xianquan, TANG Zhenjun, CHEN Yan, HE Nan. A Reversible Information Hiding Method Based on Multiple Prediction Values [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 24-32. |
[9] | ZHANG Fang. Ecological Landscape Patterns in Ebinur Lake Region Based on Remote Sensing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 156-164. |
[10] | LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115-119. |
[11] | HU Le-ning, DENG Hua, WU Hua-jing, WU Dao-ning, LIANG Shi-chu. The Characteristic of Soil Aggregate Structure in Different Artificial Forest Soils with Different Sieve Strength in Karst Region of Northeast Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 151-156. |
[12] | YANG Wen, LI Wen-jing, LI Shuang, LI Shu-ju, LIN Zhong-ming. Parallel Classification Compression Algorithm for Stream-Data Based on Granular Analysis and Storage of GEP [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 87-93. |
[13] | WANG Feng, JIN Xiao-bo, YU Jun-wei, WANG Gui-cai. V-optimal Histogram and Its Application in License Plate Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 138-143. |
[14] | HU Le-ning, SU Yi-rong, HE Xun-yang. Characteristic of Soil Aggregate Structure in Different Typical Soils in Karst Region of Northwest Guangxi,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 213-219. |
[15] | QIN Lin-chan, ZHONG Ning, LÜ Sheng-fu, LI Mi. Interaction Effects of Web Content Appeal Strategies with User Tasks and Its Influence on Eye-Movement Pattern [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 30-35. |
|