Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 58-63.doi: 10.16088/j.issn.1001-6600.2020122201

Previous Articles     Next Articles

Advanced in CYP2D Subfamily Genes and Evolutionary Mechanisms

LIANG Qiufang1,2, DONG Xiaoyan1,2, FENG Ping1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministryof Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-12-22 Revised:2021-03-07 Online:2021-09-25 Published:2021-10-19

Abstract: CYP2D enzyme plays an important role in drug metabolism and the detoxification of toxic substances. Knowing and understanding the adaptive evolution of CYP2D subfamily genes helps to understand the mechanism of CYP2D enzymes on toxic substances. Research has shown that CYP2D subfamily genes have lineage-specific expansion in the evolutionary process. In addition, gene duplication, gene conversion, and selective pressure had a certain influence on the evolution of genes, but the effect varied with different lineages. In this paper, the structure, function and evolutionary mechanism of CYP2D subfamily genes were reviewed, in order to provide a theoretical basis for understanding the adaptive evolution of CYP2D subfamily genes.

Key words: cytochrome P450, CYP2D genes, gene duplication, gene conversion, selective pressure

CLC Number: 

  • Q31
[1] FINNIGAN J D, YOUNG C, COOK D J, et al. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s[J]. Advances in Protein Chemistry and Structural Biology, 2020, 122: 289-320. DOI:10.1016/bs.apcsb.2020.06.005.
[2] SEZUTSU H, LE GOFF G, FEYEREISEN R. Origins of P450 diversity[J]. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 2013, 368(1612): 20120428. DOI:10.1098/rstb.2012.0428.
[3] GUENGERICH F P. Intersection of the roles of cytochrome P450 enzymes with xenobiotic and endogenous substrates: Relevance to toxicity and drug interactions[J]. Chemical Research in Toxicology, 2017, 30(1): 2-12. DOI:10.1021/acs.chemrestox.6b00226.
[4] UEHARA S, UNO Y, HAGIHIRA Y, et al. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan[J]. Xenobiotica: the Fate of Foreign Compounds in Biological Systems, 2015, 45(9): 766-772. DOI:10.3109/00498254.2015.1019595.
[5] KITANOVIC S, ORR T J, SPALINK D, et al. Role of cytochrome P450 2B sequence variation and gene copy number in facilitating dietary specialization in mammalian herbivores[J]. Molecular Ecology, 2018, 27(3): 723-736. DOI:10.1111/mec.14480.
[6] MALENKE J R, MAGNANOU E, THOMAS K, et al. Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat (Neotoma lepida)[J]. PLoS ONE, 2012, 7(8): e41510. DOI:10.1371/journal.pone.0041510.
[7] NEBERT D W, ADESNIK M, COON M J, et al. The P450 gene superfamily: recommended nomenclature[J]. DNA, 1987, 6(1): 1-11. DOI:10.1089/dna.1987.6.1.
[8] CHANEY M E, PIONTKIVSKA H, TOSI A J. Retained duplications and deletions of CYP2C genes among primates[J]. Molecular Phylogenetics and Evolution, 2018, 125: 204-212. DOI:10.1016/j.ympev.2018.03.037.
[9] KONSTANDI M, JOHNSON E O, LANG M A. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism[J]. Neuroscience and Biobehavioral Reviews, 2014, 45: 149-167. DOI:10.1016/j.neubiorev.2014.05.011.
[10] GOTOH O. Evolution of cytochrome P450 genes from the viewpoint of genome informatics[J]. Biological and Pharmaceutical Bulletin, 2012, 35(6): 812-817. DOI:10.1248/bpb.35.812.
[11] NEBERT D W, RUSSELL D W. Clinical importance of the cytochromes P450[J]. The Lancet, 2002, 360(9340): 1155-1162. DOI:10.1016/S0140-6736(02)11203-7.
[12] CHANEY M E, ROMINE M G, PIONTKIVSKA H, et al. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species[J]. Xenobiotica: the Fate of Foreign Compounds in Biological Systems, 2020, 50(12): 1406-1412. DOI:10.1080/00498254.2020.1785580.
[13] KIRISCHIAN N, McARTHUR A G, JESUTHASAN C, et al. Phylogenetic and functional analysis of the vertebrate cytochrome P450 2 family[J]. Journal of Molecular Evolution, 2011, 72(1): 56-71. DOI:10.1007/s00239-010-9402-7.
[14] McMILLAN D M, EL-SHERBENI A A, RICHARDS J, et al. Centrally administered CYP2D inhibitors increase oral tramadol analgesia in rats[J]. Brain Research Bulletin, 2020, 164: 400-406. DOI:10.1016/j.brainresbull.2020.09.001.
[15] 董天崴, 王爽, 杨军, 等. CYP2D6基因多态性与药物基因组学研究的进展[J]. 心血管康复医学杂志, 2014, 23(3): 343-346. DOI:10.3969/j.issn.1008-0074.2014.03.35.
[16] 冯平. CYP2D亚家族基因在脊椎动物中的研究进展[J]. 生物学通报, 2018, 53(2): 6-8. DOI:10.3969/j.issn.0006-3193.2018.02.003.
[17] FENG P, LIU Z J. Complex gene expansion of the CYP2D gene subfamily[J]. Ecology and Evolution, 2018, 8(22): 11022-11030. DOI:10.1002/ece3.4568.
[18] YASUKOCHI Y, SATTA Y. Evolution of the CYP2D gene cluster in humans and four non-human primates[J]. Genes & Genetic Systems, 2011, 86(2): 109-116. DOI:10.1266/ggs.86.109.
[19] WATANABE K P, KAWAI Y K, IKENAKA Y, et al. Avian cytochrome P450 (CYP) 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver[J]. PLoS ONE, 2013, 8(9): e75689. DOI:10.1371/journal.pone.0075689.
[20] MARTIGNONI M, GROOTHUIS G M M, DE KANTER R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction[J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(6): 875-894. DOI:10.1517/17425255.2.6.875.
[21] KAWAI Y K, ITOU K, YOSHINO T, et al. Hepatic transcriptional profile and tissue distribution of cytochrome P450 1-3 genes in the red-crowned crane Grus japonensis[J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2020, 228: 108643. DOI:10.1016/j.cbpc.2019.108643.
[22] GOPISANKAR M G. CYP2D6 pharmacogenomics[J]. Egyptian Journal of Medical Human Genetics, 2017, 18(4): 309-313. DOI:10.1016/j.ejmhg.2017.03.001.
[23] HE Z X, CHEN X W, YANG Y X, et al. A comparison of non-human primate cytochrome P450 2D members and the implication in drug discovery[J]. Current Drug Metabolism, 2016, 17(6): 520-527. DOI:10.2174/138 9200217666160219114241.
[24] YASUKOCHI Y, SATTA Y. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion[J]. Genome Biology and Evolution, 2015, 7(4): 1053-1067. DOI:10.1093/gbe/evv056.
[25] ALMEIDA D, MALDONADO E, KHAN I, et al. Whole-genome identification, phylogeny, and evolution of the cytochrome P450 family 2 (CYP2) subfamilies in birds[J]. Genome Biology and Evolution, 2016, 8(4): 1115-1131. DOI:10.1093/gbe/evw041.
[26] LYNCH M, CONERY J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. DOI:10.1126/science.290.5494.1151.
[27] DANIELSON P B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans[J]. Current Drug Metabolism, 2002, 3(6): 561-597. DOI:10.2174/1389200023337054.
[28] GONZALEZ F J, NEBERT D W. Evolution of the P450 gene superfamily: animal-plant “warfare”, molecular drive and human genetic differences in drug oxidation[J]. Trends in Genetics, 1990, 6(6): 182-186. DOI:10.1016/0168-9525(90)90174-5.
[29] THOMAS J H. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates[J]. PLoS Genetics, 2007, 3(5): e67. DOI:10.1371/journal.pgen.0030067.
[30] TEUFEL A I, JOHNSON M M, LAURENT J M, et al. The many nuanced evolutionary consequences of duplicated genes[J]. Molecular Biology and Evolution, 2019, 36(2): 304-314. DOI:10.1093/molbev/msy210.
[31] FEYEREISEN R. Arthropod CYPomes illustrate the tempo and mode in P450 evolution[J]. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 2011, 1814(1): 19-28. DOI:10.1016/j.bbapap.2010.06.012.
[32] WANG X S, LI J, DONG G C, et al. The endogenous substrates of brain CYP2D[J]. European Journal of Pharmacology, 2014, 724: 211-218. DOI:10.1016/j.ejphar.2013.12.025.
[33] TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes, 2020, 11(11): 1295. DOI:10.3390/genes11111295.
[34] CAI H, JIANG J, YANG Q, et al. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49)[J]. PLoS ONE, 2012, 7(6): e38395. DOI:10.1371/journal.pone.0038395.
[35] TESHIMA K M, INNAN H. The effect of gene conversion on the divergence between duplicated genes[J]. Genetics, 2004, 166(3): 1553-1560. DOI:10.1534/genetics.166.3.1553.
[36] MATSUNAGA E, UMENO M, GONZALEZ F J. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site[J]. Journal of Molecular Evolution, 1990, 30(2): 155-169. DOI:10.1007/BF02099942.
[37] MASIMIREMBWA C, PERSSON I, BERTILSSON L, et al. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: Association with diminished debrisoquine hydroxylase activity[J]. British Journal of Clinical Pharmacology, 1996, 42(6): 713-719. DOI:10.1046/j.1365-2125.1996.00489.x.
[38] BRATTSTEN L B. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals[J]. Journal of Chemical Ecology, 1988, 14(10): 1919-1939. DOI:10.1007/bf01013486.
[39] INGELMAN-SUNDBERG M. The human genome project and novel aspects of cytochrome P450 research[J]. Toxicology and Applied Pharmacology, 2005, 207(2 sup): 52-56. DOI:10.1016/j.taap.2005.01.030.
[40] WILSON D J, CONSORTIUM C. GenomegaMap: within-species genome-wide dN/dS estimation from over 10,000 genomes[J]. Molecular Biology and Evolution, 2020, 37(8): 2450-2460. DOI:10.1093/molbev/msaa069.
[41] SPIELMAN S J, WILKE C O. The relationship between dN/dS and scaled selection coefficients[J]. Molecular Biology and Evolution, 2015, 32(4): 1097-1108. DOI:10.1093/molbev/msv003.
[1] ZHANG Xiang, CHEN Miao, DUAN Jian-bang, LI Rui-ge, ZAI Ting-ting, WANG Jing-tao. Preparation of Polyaluminum Chloride with Coal Gangueand Calcium Aluminate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 109-114.
[2] QIU Jian-hua, ZHANG Yan-wu, ZHANG Ya-tao, ZHANG Hao-qin, LIU Jin-dun. Modification of Microporous Cellulose Acetate Membrane with Anionic Polyacrylamide by Chemical Surface-grafted Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 65-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TENG Zhijun, LÜ Jinling, GUO Liwen, XU Yuanyuan. Coverage Strategy of Wireless Sensor Network Based on Improved Particle Swarm Optimization Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 9 -16 .
[2] CHENG Yuanyao, SONG Shuxiang, JIANG Pinqun. Design of 2.4 GHz CMOS Low-noise Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 7 -13 .
[3] MA Jing, ZOU Yan-li, LI Fu-tao, MO Yu-fang. Limited-maximum-degree LBA Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 21 -24 .
[4] YUE Hong-wei, XIE Qing-lian, WEI Bao-lin, JIN Liang-nian, XIE Yue-lei, LI Qi, ZHOU Qian. Characteristics of Tl-2212 Bicrystal Josephson Junction Embedded in a Fabry-Perot Resonator[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 10 -14 .
[5] XU Dao-yun, WANG Xiao-feng. Model of Controllable Transition System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 138 -144 .
[6] JIANG Feng, DENG Qi-lie, CHEN Mei, MO Wei-bin, YANG Yong-liang. Protection of Flavonoids Extracted from Siraitia grosvenorii Leaves to Different Tissue Membranes in Rats During Exhaustive Exercise[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 140 -147 .
[7] CHEN You-ying, ZHENG Zhi, KONG Xiang-zeng, ZHANG Sheng-yuan. Classification of Colon Cancer Data Based on Bayesian Classifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 187 -191 .
[8] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27 -37 .
[9] MIAO Zhipeng, WANG Min. A New Species of Hell Ants (Hymenoptera:Formicidae:Haidomyrmecini) from the Cretaceous Burmese Amber[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 139 -142 .
[10] LI Xuanjing, LI Shengqiang, WANG Guohai, SHI Zepan, ZHOU Qihai. Diversity and Spatial Distribution of Birds in Guangxi Maoershan National Nature Reserve:Based on Line Transect Surveys and Camera Traps[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 143 -151 .