Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 64-77.doi: 10.16088/j.issn.1001-6600.2020073102

Previous Articles     Next Articles

Bus Travel Time Prediction Based on Extreme Learning Machine Optimized by Artificial Bee Colony Algorithm

XU Lunhui*, SU Nan, PIAN Yuzhuang, LIN Peiqun   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510640, China
  • Received:2020-07-31 Revised:2020-12-18 Online:2021-09-25 Published:2021-10-19

Abstract: In order to improve the prediction accuracy of bus travel time, a combined prediction model based on artificial bee colony optimization and extreme learning machine (artificial bee colony-extreme learning machine, ABC-ELM) are proposed after analyzing historical data and the characteristics of traffic flow. First, dynamic and static characteristics like distance between stations, time period and weather conditions are extracted by using IC card and GPS data; after that the dwell time of the station is calculated. Then, the artificial bee colony optimization algorithm (ABC) is embedded in the traditional extreme learning machine algorithm (ELM) to solve the problem of slow convergence speed and difficulty in selecting initial weights and thresholds ELM in bus travel time prediction. Finally, the travel time of the bus on target road section is predicted by using the ABC-ELM algorithm. The model is verified based on the real operating data of Shenzhen Bus 620. The results show that, compared with the widely used BP neural network, SVM and ELM, the method proposed in this paper can maintain lower prediction errors in different road environments and has strong robustness (the RMSE error in peak/off-peak hour is 11.91/8.72, in workday/non-work day is 11.46/9.54,in sunny/rainy day is 10.83/12.31; the coefficient of determination R2 in peak/off-peak hour is 0.87/0.92 in workday/non-work day is 0.83/0.88, in sunny/rainy day is 0.89/0.85), which makes it more suitable for travel time prediction in complex urban road environment and for main line bus.

Key words: urban traffic, public bus, travel time prediction, extreme learning machine, artificial bee colony algorithm

CLC Number: 

  • U491.17
[1] 胡郁葱,宫曼琳,谢昳辰,等. 网络预约出租汽车营运模式的四方博弈模型[J]. 公路交通科技, 2020, 37(2):130-136.
[2] YU H Y,CHEN D G,WU Z H,et al. Headway-based bus bunching prediction using transit smart card data[J]. Transportation Research Part C:Emerging Technologies,2016,72:45-59. DOI:10.1016/j.trc.2016.09.007.
[3] HE P L,JIANG G Y,LAM S K,et al. Travel-time prediction of bus journey with multiple bus trips[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(11):4192-4205. DOI:10.1109/TITS.2018.2883342.
[4] MA J M,CHAN J,RISTANOSKI G,et al. Bus travel time prediction with real-time traffic information[J]. Transportation Research Part C:Emerging Technologies,2019,105:536-549. DOI:10.1016/j.trc.2019.06.008.
[5] KUMAR B A,VANAJAKSHI L,SUBRAMANIAN S C. Bus travel time prediction using a time-space discretization approach[J]. Transportation Research Part C:Emerging Technologies,2017,79:308-332. DOI:10.1016/j.trc.2017.04.002.
[6] 李华民,吴俊美,孙棣华,等. 基于RFID电子车牌数据的公交行程时间预测方法[J]. 中国公路学报,2019,32(8):165-173,182. DOI:10.19721/j.cnki.1001-7372.2019.08.015.
[7] 宋现敏,刘明鑫,马林,等. 基于极限学习机的公交行程时间预测方法[J]. 交通运输系统工程与信息,2018,18(5):136-142,150. DOI:10.16097/j.cnki.1009-6744.2018.05.020.
[8] 刘迎,过秀成,周润瑄,等. 基于多源数据融合的干线公交车辆行程时间预测[J]. 交通运输系统工程与信息,2019,19(4):124-129,148. DOI:10.16097/j.cnki.1009-6744.2019.04.018.
[9] 苗旭,王忠宇,吴兵,等. 考虑前序路段状态的公交到站时间双层BPNN预测模型[J]. 交通运输系统工程与信息,2020,20(2):127-133. DOI:10.16097/j.cnki.1009-6744.2020.02.019.
[10] BAI C,PENG Z R,LU Q C,et al. Dynamic bus travel time prediction models on road with multiple bus routes[J]. Computational Intelligence and Neuroscience,2015,2015:432389. DOI:10.1155/2015/432389.
[11] JEONG R,RILETT R. Bus arrival time prediction using artificial neural network model[C] // Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems. Piscataway,NJ:IEEE,2004:988-993. DOI:10.1109/ITSC.2004.1399041.
[12] KVIESIS A,ZACEPINS A,KOMASILOVS V,et al. Bus arrival time prediction with limited data set using regression models[C] // Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems- Volume 1: RESIST. Francisco:Science and Technology Publications,2018:643-647. DOI:10.5220/0006816306430647.
[13] 周雪梅,杨晓光,王磊. 公交车辆行程时间预测方法研究[J]. 交通与计算机,2002,20(6):12-14. DOI:10.3963/j.issn.1674-4861.2002.06.004.
[14] YU H Y,WU Z H,CHEN D W,et al. Probabilistic prediction of bus headway using relevance vector machine regression[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(7):1772-1781. DOI:10.1109/TITS.2016.2620483.
[15] YU B,LAM W H K,TAM M L. Bus arrival time prediction at bus stop with multiple routes[J]. Transportation Research Part C:Emerging Technologies,2011,19(6):1157-1170. DOI:10.1016/j.trc.2011.01.003.
[16] KARABOGA D,AKAY B,OZTURK C. Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks[C] // 2007 Modeling Decisions for Artificial Intelligence 4th International Conference. Berlin:Springer,2007:318-329. DOI:10.1007/978-3-540-73729-2_30.
[17] SHALABY A,FARHAN A. Prediction model of bus arrival and departure times using AVL and APC data[J]. Journal of Public Transportation,2004,7(1):41-61. DOI:10.5038/2375-0901.7.1.3.
[18] HUANG Z L,XU L H,LIN Y J,et al. Citywide metro-to-bus transfer behavior identification based on combined data from smart cards and GPS[J]. Applied Sciences,2019,9(17):3597. DOI:10.3390/app9173597.
[19] HUANG Z L, XU L H, LIN Y J. Multi-stage pedestrian positioning using filtered WiFi scanner data in an urban road environment[J]. Sensors, 2020, 20(11):3259. DOI:10.3390/s20113259.
[20] WU P,HUANG Z L,PIAN Y Z,et al. A combined deep learning method with attention-based LSTM model for short-term traffic speed forecasting[J]. Journal of Advanced Transportation, 2020, 2020:8863724. DOI:10.1155/2020/8863724.
[21] 王芳杰,王福建,王雨晨,等. 基于LightGBM算法的公交行程时间预测[J].交通运输系统工程与信息,2019,19(2):116-121. DOI:10.16097/j.cnki.1009-6744.2019.02.017.
[22] 韩勇,周林,高鹏,等. 基于BP神经网络的公交动态行程时间预测方法研究[J].中国海洋大学学报(自然科学版),2020,50(2):142-154. DOI:10.16441/j.cnki.hdxb.20180285.
[23] HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70(1/2/3):489-501. DOI:10.1016/j.neucom.2005.12.126.
[24] KARABOGA D,BASTURK B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of global optimization,2007,39:459-471. DOI:10.1007/s10898-007-9149-x.
[25] 彭新建,翁小雄. 基于萤火虫算法优化BP神经网络的公交行程时间预测[J].广西师范大学学报(自然科学版),2017,35(1):28-36. DOI:10.16088/j.issn.1001-6600.2017.01.005.
[26] 尹安藤. 基于公交GPS和IC卡数据的公交OD推算[D]. 哈尔滨:哈尔滨工业大学,2017.
[1] XU Jianmin, WEI Jia, SHOU Yanfang. Comprehensive Evaluation of Urban Road Traffic Operation StatusBased on Game Theory-Cloud Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1-10.
[2] LÜ Panlong,WENG Xiaoxiong, PENG Xinjian. Public Traffic Passenger Recognition Based on Differential Evolution Algorithm SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 106-114.
[3] HUANG Weiqi, JIN Wenzhou, HUANG Jingxiang, HAN Bowen. Pricing Problem of Customized Bus under Different Market Strategies [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 8-17.
[4] PENG Xinjian, WENG Xiaoxiong. Bus Travel Time Prediction Based on BP Neural Network Optimized by Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 28-36.
[5] ZHANG Chao-qun, ZHENG Jian-guo, LI Tao-shen. Effect of Scout Bees on the Performance of Artificial Bee Colony Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 72-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Li, ZOU Yanli, WANG Yi, LI Ke. A Comparative Study on Three Types of Distributed PowerPlant Connection Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 30 -36 .
[2] DENG Jin-hong, ZHAO Jun-ling. SS Chaotic Set in Set of Non-recurrent Points[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 40 -44 .
[3] HUANG Wan-yun, SU Gui-fa, PAN Cheng-xue, QIN Jiang-ke, TANG Huang, YI Xiang-hui. Synthesis and Crystal Structure of Conformationally Constrained Peptides with a Trans-2,3-diaryl-1-aminocyclopropanecarboxylic Acid Residue[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 56 -60 .
[4] SU Xu, LIU Yu-ping. Photosynthetic Characteristics of Mentha haplocalyx Briq. of the Medical Plant Growing in Qinghai,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 76 -81 .
[5] LU Qi-xi, LIN Yong, BIN Shi-yu, TANG Zhang-sheng, PENG Ting. Analysis of Cold Tolerance Measure at Low-temperature in Six Tilapia Families[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 104 -109 .
[6] ZHANG Ren-jin, TANG Cui-fang, LIU Bin. Researching and Programming of Computer Games Using Artificial Neural Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 119 -124 .
[7] E Xu, SHAO Liang-shan, LI Sheng, WANG Quan-tie. Discretization Algorithm for Interval Numbers by Associated Degree[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 134 -137 .
[8] LU Hong, QIN Yong-bin, LUO Cong. Application of Memetic Algorithm in the Airport Ground Services Scheduling Problem[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 145 -150 .
[9] ZHANG Xin-ming, ZHANG Yu-shan, LI Zhen-yun. Image Thresholding Method Based on Improved Moment Preserving[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 185 -190 .
[10] XIONG Shun-qing, ZHOU Wei-hong. New Digital Watermarking Algorithm Based on NSCT and SVD[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 195 -199 .