Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (3): 133-143.doi: 10.16088/j.issn.1001-6600.2018.03.019

• Orginal Article • Previous Articles     Next Articles

Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model

LI Xianjiang, SHI Shuqin*, CAI Weimin, CAO Yuqing   

  1. School of Management, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2017-11-03 Online:2018-07-17 Published:2018-07-17

Abstract: Based on the land use data of 2005, 2010 and 2015 in Tianjin Binhai New Area, this paper quantitatively analyzes the change of land use in the study area by using the dynamic degree model. The CA-Markov model is used to predict the future land use pattern of the study area, and the simulation data of 2015 and the actual interpretation data in 2015 are verified. According to the extended kappa index, the consistency between the two layers is high, indicating that the simulation accuracy is better. And then the land use pattern in 2025 was simulated and predicted, the results are as follows: compared with the period from 2005 to 2015, the land use types in the study area during the 2015-2025 period are mainly based on the waters, urban and rural mining and residential land and cultivated land. The area of urban and rural industrial and mining residents will continue to expand on the basis of the original, the area of water will continue to increase, the area of woodland, grassland and unused land will continue to decrease, the area of cultivated land will continue to decrease significantly, and land use change is larger. This indicates that the future land use pressure of the study area will be further increased, which indicates that relevant response should be done in advance. This study provides the relevant basis for the future land use planning of Tianjin Binhai New Area.

Key words: Tianjin Binhai New Area, China, land use dynamic degree, CA-Markov model, precision test, planning

CLC Number: 

  • F301.2
[1] 刘纪远,匡文慧,张增祥,等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J].地理学报,2014,69(1):3-14.DOI:10.11821/dlxb201401001.
[2] 李秀彬. 全球环境变化研究的核心领域:土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):553-558.
[3] 王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.DOI: 10.11820/dlkxjz.1999.01.012.
[4] 唐华俊,吴文斌,杨鹏,等.土地利用/土地覆被变化(LUCC)模型研究进展[J].地理学报, 2009,64(4):456-468. DOI:10.3321/j.issn:0375-5444.2009.04.008.
[5] 黎夏,叶嘉安.约束性单元自动演化CA模型及可持续城市发展形态的模拟[J].地理学报, 1999,54(4):289-298. DOI:10.3321/j.issn:0375-5444.1999.04.001.
[6] 于兴修,杨桂山.中国土地利用/覆被变化研究的现状与问题[J].地理科学进展,2002,21(1):51-57. DOI:10.3969/j.issn.1007-6301.2002.01.007.
[7] 张永民,赵士洞, VERBURG P H.CLUE-S模型及其在奈曼旗土地利用时空动态变化模拟中的应用[J].自然资源学报,2003,18(3):310-318.DOI:10.3321/j.issn:1000-3037.2003.03.008.
[8] 余强毅,吴文斌,唐华俊,等.复杂系统理论与Agent模型在土地变化科学中的研究进展[J].地理学报, 2011,66(11):1518-1530. DOI:10.11821/xb201111008.
[9] 杨国清,刘耀林,吴志峰.基于CA-Markov模型的土地利用格局变化研究[J].武汉大学学报(信息科学版), 2007,32(5):414-418.DOI:10.3969/j.issn.1671-8860.2007.05.010.
[10] 姜文亮. 基于GIS和空间Logistic模型的城市扩展预测:以深圳市龙岗区为例[J].经济地理,2007,27(5):800-804.DOI:10.3969/j.issn.1000-8462.2007.05.021.
[11] 刘勇,吴次芳,岳文泽,等.基于SLEUTH模型的杭州市城市扩展研究[J].自然资源学报, 2008(5):797-807. DOI:10.11849/zrzyxb.2008.05.007.
[12] 黎夏,刘小平.基于案例推理的元胞自动机及大区域城市演变模拟[J].地理学报,2007, 62(10):1097-1109. DOI:10.11821/xb200710009.
[13] 井梅秀,李晶.基于CA-Markov模型的关中-天水经济区土地利用变化动态模拟[J].陕西师范大学学报(自然科学版),2013,41(1):99-103.DOI:10.3969/j.issn.1672-4291.2013.01.021.
[14] 刘淑燕,余新晓,李庆云,等.基于CA-Markov模型的黄土丘陵区土地利用变化[J].农业工程学报,2010,26(11):297-303.DOI:10.3969/j.issn.1002-6819.2010.11.051.
[15] SUBEDI P, SUBEDI K, THAPA B.Application of a hybrid cellular automaton-Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, Florida[J]. Science and Education, 2013, 1(6):126-132. DOI:10.12691/aees-1-6-5.
[16] KITYUTTACHAI K, TRIPATHI N K, TIPDECHO T, et al.CA-Markov analysis of constrained coastal urban growth modeling: Hua Hin seaside city, Thailand[J]. Sustainability, 2013, 5(4):1480-1500. DOI: 10.3390/SU5041480.
[17] ARAYA Y H, CABRAL P.Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal[J]. Remote Sensing, 2010, 2(6):1549-1563. DOI:10.3390/rs2061549.
[18] DEEP S, SAKLANI A.Urban sprawl modeling using cellular automata[J]. Egyptian Journal of Remote Sensing and Space Science, 2014, 17(2):179-187.
[19] 李志,刘文兆,郑粉莉.基于CA-Markov模型的黄土塬区黑河流域土地利用变化[J].农业工程学报,2010,26(1):346-352.DOI:10.3969/j.issn.1002-6819.2010.01.062.
[20] 王友生,余新晓,贺康宁,等.基于CA-Markov模型的藉河流域土地利用变化动态模拟[J].农业工程学报,2011,27(12):330-336.DOI:10.3969/j.issn.1002-6819.2011.12.062.
[21] 陈藜藜,宋戈,周浩,等.松嫩高平原土地利用变化分析及趋势模拟:以黑龙江省巴彦县为例[J].土壤通报,2017(1):61-69.DOI:10.19336/j.cnki.trtb.2017.01.07.
[22] PONTIUS R G JR, MILLONES M. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment[J]. International Journal of Remote Sensing, 2011, 32(15):4407-4429.
[23] 罗平,杜清运,雷元新,等.地理特征元胞自动机及城市土地利用演化研究[J].武汉大学学报(信息科学版),2004,29(6):504-507.DOI:10.13203/j.whugis2004.06.009.
[24] 何丹,周璟,高伟,等.基于CA-Markov模型的滇池流域土地利用变化动态模拟研究[J].北京大学学报(自然科学版),2014,50(6):1095-1105.DOI:10.13209/j.0479-8023.2014.155.
[25] 许小娟,刘会玉,林振山,等.基于CA-MARKOV模型的江苏沿海土地利用变化情景分析[J].水土保持研究,2017, 24(1):213-218.DOI:10.13869/j.cnki.rswc.2017.01.028.
[26] 陈君颖,田庆久.高分辨率遥感植被分类研究[J].遥感学报,2007,11(2):221-227. DOI:10.3321/j.issn:1007-4619.2007.02.012.
[27] 李丽娜,李庆波,阎侯赖,等.一种改进的随机检验法用于主成分选择以避免光谱分析校正模型的过拟合或欠拟合[J].光谱学与光谱分析, 2010, 30(11):3041-3046. DOI:10.3964/j.issn.1000-0593 (2010)11-3041-06.
[28] 徐宗学,赵芳芳.黄河流域日照时数变化趋势分析[J].资源科学,2005,27(5):153-159. DOI:10.3321/j.issn:1007-7588.2005.05.024.
[29] 张远景. 哈尔滨中心城区生态网络分析及其景观生态格局优化研究[D].哈尔滨:东北农业大学, 2015.
[30] 杨丽桃. 福州城区土地利用变化LCM模型构建与模拟[D].福州:福建农林大学,2012.
[31] 张晓娟,周启刚,王兆林,等.基于MCE-CA-Markov的三峡库区土地利用演变模拟及预测[J].农业工程学报,2017,33(19):268-277.DOI:10.11975/j.issn.1002-6819.2017.19.035.
[1] YAN Kejian, HU Qimin, LI Jianling, DANG Guilan, WU Lei. New Records of Rubiaceae from Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 109-112.
[2] ZHOU Junniu, MEI Junlin, MA Jiangming, ZHANG Yajun, WANG Haimiao, JIAN Rui. Characteristics of Clonal Reproduction of Alchornea trewioides in Karst Region of Guilin, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 110-116.
[3] CHEN Huiming, JIANG Xuankong, YANG Zizhong. Two New Species of the Genus Macrothele of China (Araneae, Macrothelidae) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 114-119.
[4] WU Ranxin, YU Tailin, FENG Changzhang, MA Yujun, ZHANG Gang. Diversity of Migratory Birds in Jiuwan Mountain, Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 140-148.
[5] PAN Xiaomei, LI Mingjin, YANG Zhangqi, MA Jiangming, LING Tianwang, YAN Peidong. Study on Undergrowth Flora of Pinus massoniana Plantations with Four Different Forest Ages in Southern Subtropical Area of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 136-143.
[6] HUANG Yuying, ZHAO Yinjun, XIE Qiongying, TONG Kai, DENG Qiyu, LIANG Yulian. Downscaling Method of TRMM Satellite Precipitation Data in Beibu Gulf Economic Zone in Southwest China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 163-169.
[7] XU Lunhui,HUANG Baoshan,ZHONG Haixing. Time Window Model and Algorithm with AGV System Path Planning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 1-8.
[8] XIONG Xiaoju, LIAO Chungui, HU Baoqing, CHEN Yuelian, ZHU Haizhen. Spatial and Temporal Variability in the Net Primary Production and Its Driving Factors Base on MODIS Data in Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 187-195.
[9] WEI Hongjin, ZHOU Xile, CHEN Bin, YANG Qinghua. New Records for Ferns from Guizhou,China (Ⅱ) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 152-157.
[10] HU Yucong, XIE Yichen,HUANG Jingxiang. The Change of Private Car Travel Rate under the Influence of Policy: a Case Study of Guangzhou [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 98-105.
[11] XU Yanting,LIU Xingzhao,WANG Zhenbo. Spatial-temporal Distribution Characteristics of Air Quality in Chinese Cities Based on the AQI Index [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 187-196.
[12] HAN Huiqing, CAI Guangpeng, YIN Changying, MA Geng, ZHANG Yingjia, LU Yi. Analysis of Landscape Stability in Middle and Upper Reaches of the Wujiang River in 2000 and 2015 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 197-204.
[13] ZHENG Lixia, LIN Fang , YANG Shanchao. Grey Correlation Analysis on the High-Citation and High-DownloadPapers of Subject Field: A Case of Probability and Mathematical Statistics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 76-83.
[14] ZHENG Haixia, WANG Yue, CHEN Fen, GOU Chaoyang, ZHENG Qingrong. Pollution Characteristics and Potential Ecological Risk Assessmentof Soil Heavy Metal in the South Top of Wutai Mountain, Shanxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 99-107.
[15] LI Qing, WANG Luyu, ZHANG Zuxu, CHEN Huiming. Two New Spider Species (Arachnida, Araneae) fromFanjingshan National Nature Reserve, Guizhou, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 119-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!