Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (4): 34-46.doi: 10.16088/j.issn.1001-6600.2020080902

Previous Articles     Next Articles

Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network

ZHANG Weibin, WU Jun, YI Jianbing*   

  1. College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
  • Received:2020-08-09 Revised:2020-12-08 Online:2021-07-25 Published:2021-07-23

Abstract: In order to improve the detection accuracy of controlled items, a target detection algorithm that combines Receptive Field Block (RFB) network structure and feature fusion is proposed. First, the collected security inspection data are eliminated and filtered, then, the security inspection data are manually labeled and the data are enhanced. Based on the MobileNetV3-SSD algorithm, the RFB network is introduced to improve its network structure to strengthen the network’s feature extraction capabilities, and the feature fusion method is used to improve the model’s small target detection capability. Finally, a security inspection dataset SCCI2020 is constructed to verify the performance of the algorithm, where the dataset contains 91 767 images. Experimental results show that the detection accuracy of this algorithm on the security inspection dataset SCCI2020 is 87.0%, which is 2.7 percentage point higher than the detection accuracy of the MobileNetV3-SSD algorithm. The detection accuracy on the COCO2014 general dataset and COCO2017 general dataset are 21.9% and 23%. Compared with VGG16-SSD and MobileNetV3-SSD algorithm, the detection accuracy is improved to a certain extent.

Key words: controlled items detection, small target, RFB network, feature fusion, MobileNetV3-SSD

CLC Number: 

  • TP391.41
[1]JIAO L C, ZHAO J. A survey on the new generation of deep learning in image processing[J]. IEEE Access, 2019, 7: 172231-172263. DOI:10.1109/ACCESS.2019.2956508.
[2]ZHANG S Q, PAN X Z, CUI Y L, et al. Learning affective video features for facial expression recognition via hybrid deep learning[J]. IEEE Access, 2019, 7: 32297-32304. DOI:10.1109/ACCESS.2019.2901521.
[3]WANG K D, LI S Y, NIU S S, et al. Detection of infrared small targets using feature fusion convolutional network[J]. IEEE Access, 2019, 7: 146081-146092. DOI:10.1109/ACCESS.2019.2944661.
[4]LIN L K, WANG S Y, TANG Z X. Using deep learning to detect small targets in infrared oversampling images[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952. DOI:10.21629/JSEE.2018.05.07.
[5]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2014: 580-587. DOI:10.1109/CVPR.2014.81.
[6]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI:10.1109/TPAMI.2015.2389824.
[7]GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. Los Alamitos, CA: IEEE Computer Society, 2015: 1440-1448. DOI:10.1109/ICCV.2015.169.
[8]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/TPAMI.2016.2577031.
[9]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2016: 779-788. DOI:10.1109/CVPR.2016.91.
[10]REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL].(2018-04-08)[2020-07-10]. https://arxiv.org/abs/1804.02767v1.
[11]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Computer Vision: ECCV 2016. Berlin: Springer, 2016: 21-37. DOI:10.1007/978-3-319-46448-0_2.
[12]HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2020-07-10].https://arxiv.org/abs/1704.04861v1.
[13]SANDLER M, HOWARD A G, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 4510-4520. DOI:10.1109/CVPR.2018.00474.
[14]LI Z X, ZHOU F Q. FSSD: feature fusion single shot mulitibox detector[EB/OL].(2018-05-17)[2020-7-10]. https://arxiv.org/abs/1712.00960v3.
[15]CAO G M, XIE X M, YANG W Z, et al. Feature-fused SSD: fast detection for small objects[C]// Proceedings of SPIE Volume 10615: Ninth International Conference on Graphic and Image Processing (ICGIP 2017). Bellingham, WA: SPIE, 2018: 106151E. DOI:10.1117/12.2304811.
[16]LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// Computer Vision: ECCV 2018. Berlin: Springer, 2018: 404-419. DOI:10.1007/978-3-030-01252-6_24.
[17]HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. Los Alamitos, CA: IEEE Computer Society, 2019: 1314-1324. DOI:10.1109/ICCV.2019.00140.
[18]MIAO C J, XIE L X, WAN F, et al. SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2019: 2114-2123. DOI:10.1109/CVPR.2019.00222.
[19]DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[EB/OL].(2016-05-20)[2020-7-10]. https://arxiv.org/abs/1605.06409.
[20]LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2017: 936-944. DOI:10.1109/CVPR.2017.106.
[21]REN J, CHEN X H, LIU J B, et al. Accurate single stage detector using recurrent rolling convolution[EB/OL].(2017-04-19)[2020-7-10]. https://arxiv.org/abs/1704.05776.
[22]SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// AAAI'17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4278-4284. DOI:10.5555/3298023.3298188.
[23]王俊强, 李建胜, 周学文, 等. 改进的SSD算法及其对遥感影像小目标检测性能的分析[J]. 光学学报, 2019, 39(6): 0628005. DOI:10.3788/AOS201939.0628005.
[24]雷霆,谢榕昌, 黄滔, 等. 基于SSD改进算法的电缆隧道积水识别方法[J]. 广东电力, 2019, 32(9): 131-136.
[25]任宇杰, 杨剑, 刘方涛, 等. 基于SSD和MobileNet网络的目标检测方法的研究[J]. 计算机科学与探索, 2019, 13(11): 1881-1893. DOI:10.3778/j.issn.1673-9418.1906023.
[26]吉祥凌, 吴军, 易见兵, 等. 基于深度学习的管制物品自动检测算法研究[J]. 激光与光电子学进展, 2019, 56(18): 180402.
[1] BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11.
[2] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DAI Yunfei, ZHU Longji. Research on Switch Quasi-Z Source Bidirectional DC/DC Converter Applied to Super Capacitor Energy Storage[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 11 -19 .
[2] LÜ Huilian, HU Weiping. Research on Speech Emotion Recognition Based on End-to-End Deep Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 20 -26 .
[3] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[4] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[5] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[6] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[7] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[8] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[9] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[10] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .