Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (3): 59-69.doi: 10.16088/j.issn.1001-6600.2020.03.008
Previous Articles Next Articles
YANG Xiaowei1,2, ZHANG Junjian1*
CLC Number:
[1] 陈希孺. 广义线性模型的拟似然法[M].合肥: 中国科学技术大学出版社, 2011: 49-75. [2] GEORGE E. Statistics in the 21st century[M].London: Chapman and Hall, 2002: 350-358. [3] RAO C, WO Y. Model selection[M].Beachwood: Institute of Mathematical Statistics, 2001: 1-64. [4] CAMERON A C, TRIVEDI P K. Regression-based tests for overdispersion in the Poisson model[J].Journal of Econometrics, 1990, 46(3):347-364. DOI: 10.1016/0304-4076(90)90014-K. [5] QIAN G Q, FIELD C. Law of iterated logarithm and consistent model selection criterion in logistic regression[J]. Statistics and Probability Letters, 2002, 56(1): 101-112. DOI: 10.1016/S0167-7152(01)00191-2. [6] AKAIKE H. Information theory and an extension of the maximum likelihood principle[C]//Proceedings of the Second International Symposium on Information Theory. Budapest: Akademiai Kiado,1973: 267-281.DOI: 10.1007/978-1-4612-0919- 5_38. [7] SCHWARZ G. Estimating the dimension of a model[J].Annals of Statistics, 1978, 6(2): 461-464. DOI: 10.1214/aos/ 1176344136. [8] RISSANEN J. Stochastic complexity in statistical inquiry[M].Singapore: World Scientific Publishing, 1989:123-133. [9] TUTZ G. Regression for categorical data[M].London: Cambridge University Press, 2011: 143-162. [10]WANG Z, MA S G, ZAPPITELLI M, et al. Penalized count data regression with application to hospital stay after pediatric cardiac surgery[J]. Statistical Methods in Medical Research, 2016, 26(5): 2685-2703.DOI:10.1177/0962280214530608. [11]MALLOWS C. Some comments on Cp[J].Technometrics, 1973, 15(4): 661-675. DOI: 10.2307/1267380. [12]QIAN G Q, KUNSCH H. Some notes on rissanen’s stochastic complexity[J].IEEE Transactions on Information Theory, 1998, 44(2): 782-786. DOI: 10.1109/18.661521. [13]RISSANEN J. Fisher information and stochastic complexity[J].IEEE Transactions Information Theory, 1996, 42(1): 40-47. DOI: 10.1109/18.481776. [14]RAO C, ZHAO L C. Linear representation of m-estimates in linear models[J].The Canadian Journal of Statistics, 1992, 20(4): 359-368. DOI: 10.2307/3315607. [15]WU Y, ZEN M M. A strongly consistent information criterion for linear model selection based on M-estimation[J]. Probability Theory and Related Fields, 1999, 113(4): 599-625. DOI: 10.1007/s004400050219. [16]QIAN G Q, WU Y H. Strong limit theorems on model selection in generalized linear regression with binomial responses[J].Statisticsa Sinica, 2006, 16(4): 1335-1365. [17]RIGOLLET P. Kullback-Leibler aggregation and misspecified generalized linear models[J].The Annals of Statistics, 2012, 40(2): 639-665. DOI: 10.1214/11-AOS961. [18]CHOW Y, TEICHER H. Probability Theory: independence, interchangeability, martingales[M].3rd ed.New York: Springer, 1997: 30-45. [19]PETROV V. Limit theorems of probability theory: sequences of independent random variables[M].New York: Oxford University Press, 1995: 85-88. [20]McCULLAGH P, NELDER J. Generalized linear models[M].2nd ed.London: Chapman and Hall, 1989: 90-112. [21]BOHMAN H. Two inequalities for poisson distributions[J].Skandinavisk Aktuarietidskrift,1963,46(1): 47-52. DOI: 10.1080/03461238.1963.10404790. [22]GEORGE E, McCULLOCK R. Approaches for bayesian variable selection[J].Statistica Sinica,1997, 7(2): 339-373. [23]TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society,1996, 58(1): 267-288. DOI: 10.1.1.35.7574. |
[1] | YANG Shan-chao, LIANG Dan. Strong Consistency of Frequency Polygon Density Estimator for φ Mixing Sequence [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 16-21. |
|