Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (1): 70-78.doi: 10.16088/j.issn.1001-6600.2020.01.009
Previous Articles Next Articles
LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong*
CLC Number:
[1] ZARGHAMI A, LOOIJE N, HARRY V D A. Assessment of interaction potential in simulating nonisothermal multiphase systems by means of lattice Boltzmann modeling[J]. Physical Review E, 2015,92(21): 023307. DOI:10.1103/PhysRevE.92.023307. [2] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1):439-472. DOI:10.1146/annurev-fluid-121108-145519. [3] SIDIK N A C, MAMAT R. Recent progress on lattice Boltzmann simulation of nanofluids: A review[J]. International Communications in Heat and Mass Transfer, 2015,66: 11-22. DOI:10.1016/j.icheatmasstransfer.2015.05.010. [4] ZARGHAMI A, FALCUCCI G, JANNELLI E, et al. Lattice Boltzmann modeling of water entry problems[J]. International Journal of Modern Physics C, 2014,25(12): 1441012. DOI:10.1142/s0129183114410125. [5] 覃章荣,张超英,丘滨,等.基于CUDA的格子Boltzmann数值模拟加速实现[J].广西师范大学学报(自然科学版),2012,30(4):18-24. DOI:10.16088/j.issn.1001-6600.2012.04.002. [6] 闻炳海,张超英,刘海燕,等.大血管中血液流动的LBM模拟[J].广西师范大学学报(自然科学版),2008,26(4):22-25. DOI:10.16088/j.issn.1001-6600.2008.04.024. [7] SUCCI S. The lattice Boltzmann equation: for fluid dynamics and beyond[M]. Oxford: Clarendon Press, 2001:58-60. [8] WOLFGLADROW D A. Lattice gas cellular automata and lattice Boltzmann models: an introduction[M]. Bremerhaven: Springer, 2005:187-192. [9] ZIEGLER D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993,71(5): 1171-1177. DOI:10.1007/bf01049965. [10]LADD A J C, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics, 2001, 104(5):1191-1251. DOI:10.1023/a:1010414013942. [11]FILIPPOVA O, HÄNEL D. Lattice-Boltzmann simulation of gas-particle flow in filters[J]. Computers and Fluids, 1997, 26(7):697-712. DOI:10.1016/S0045-7930(97)00009-1. [12]何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009:136-141. [13]MEI R, LUO L S, SHYY W. An accurate curved boundary treatment in the lattice Boltzmann method[J]. Journal of Computational Physics, 1999,155(2): 307-330. DOI:10.1006/jcph.1999.6334. [14]郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2009:68-72. [15]BOUZIDI M, FIRDAOUSS M, LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids, 2001, 13(11):3452-3459. DOI:10.1063/1.1399290. [16]LALLEMAND P, LUO L S. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184(2):406-421. DOI:10.1016/S0021-9991(02)00022-0. [17]YU D, REN W, SHYY W. A unified boundary treatment in lattice Boltzmann method[C]// Proceedings of the 41st Aerospace Sciences Meeting and Exhibit.Reston, VA:AIAA, 2003:0953. DOI:10.2514/6.2003-953. [18]TAO S, HE Q, CHEN B M, et al. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles[J]. Computers and Mathematics with Applications, 2018,76(7):1593-1607. DOI:10.1016/j.camwa.2018.07.013. [19]MOHAMMADIPOOR O R, NIAZMAND H, MIRBOZORGI S A. Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields[J]. Physical Review E, 2014, 89(1):013309. DOI:10.1103/PhysRevE.89.013309. [20]NASH R W, CARVER H B, BERNABEU M O, et al. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains[J]. Physical Review E, 2014,89(2): 023303. DOI:10.1103/PhysRevE.89.023303. [21]SANJEEVI S K P, ZARGHAMI A, PADDING J T. Choice of no-slip curved boundary condition for lattice Boltzmann simulations of high-Reynolds-number flows[J]. Physical Review E, 2018, 97(4):043305. DOI: 10.1103/PhysRevE.97.043305. [22]ROHDE M, DERKSEN J J, VAN D A H E A. Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes[J]. Physical Review E, 2002, 65(5):056701. DOI:10.1103/PhysRevE.65.056701. [23]COUPANEC E L, VERSCHAEVE J C G. A mass conserving boundary condition for the lattice Boltzmann method for tangentially moving walls[J]. Mathematics and Computers in Simulation, 2011,81(12): 2632-2645. DOI:10.1016/j.matcom.2011.05.004. [24]李华兵.晶格玻尔兹曼方法对血液流的初步研究[D]. 上海:复旦大学,2004. [25]MEI R, SHYY W, YU D, et al. Lattice Boltzmann method for 3-D flows with curved boundary[J]. Journal of Computational Physics, 2000, 161(2):680-699. DOI:10.1006/jcph.2000.6522. [26]BAO J, YUAN P, SCHAEFER L. A mass conserving boundary condition for the lattice Boltzmann equation method[J]. Journal of Computational Physics, 2008, 227(18):8472-8487. DOI:10.1016/j.jcp.2008.06.003. [27]LUO L S. Lattice-gas automata and lattice boltzmann equations for two-dimensional hydrodynamics[D]. Atlanta:Georgia Institute of Technology, 1993. |
[1] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
[2] | QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37. |
[3] | HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43. |
[4] | CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21. |
[5] | LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63. |
[6] | QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24. |
[7] | ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148. |
[8] | QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11. |
|