Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (1): 41-46.doi: 10.16088/j.issn.1001-6600.2020.01.005
Previous Articles Next Articles
SHE Lianbing*, GAO Yunlong
CLC Number:
[1] MARIN-RUBIO P, REAL J. Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains[J].Nonlinear Analysis-Theory Methods & Applications,2007,67(10): 2784-2799. [2] ROSA R. The global attractor for the 2D Navier-Stokes flow on some unbounded domains[J].Nonlinear Analysis-Theory Methods & Applications,1998,32(1): 71-85. [3] CARABALLO T, LUKASZEWICZ G, REAL J. Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains[J].Comptes Rendus Mathematique,2006,342(4): 263-268. [4] LANGA J A, LUKASZEWICZ G, REAL J. Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains[J].Nonlinear Analysis-Theory Methods & Applications,2007,66(3): 735-749. [5] WANG B X. Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains[J].Electronic Journal of Differential Equations,2012,59: 1285-1291. [6] BALL J M. Global attractor for damped semilinear wave equations[J].Discrete and Continuous Dynamical Systems, 2003,10(1/2): 31-52. [7] LI Y R, WANG R H, YIN J Y. Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels[J].Discrete and Continuous Dynamical Systems Series B,2017,22(5): 2569-2586. [8] SHE L B, LI Y R, WANG R H. Pullback-forward dynamics for damped Schrödinger equations with time-dependent forcing[J].Discrete Dynamics in Nature and Society,2018,3: 1-14. [9] 佘连兵, 王仁海. 非自治Reaction-Diffusion方程后项紧的拉回吸引子的存在性[J].四川师范大学学报(自然科学版), 2017,40(6): 1-5. [10]佘连兵, 李信韬, 李扬荣. 无界域上非自治Reaction-Diffusion方程的后向紧动力学[J].西南大学学报(自然科学版), 2018,40(9): 59-66. [11]CARVALHO A, LANGA J, ROBINSON J. Attractors for infinite-dimensional non-autonomous dynamical systems[M].New York: Springer,2013: 182. |
No related articles found! |
|