Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (3): 28-32.

Previous Articles     Next Articles

Periodic Solutions for Second-order Ordinary p-Laplacian System

LI Chuan-hua1, FENG Chun-hua2   

  1. 1.College of Graduate,Guangxi Normal University,Guilin Guangxi541004,China;
    2.College of Mathematical Sciences,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2011-05-12 Online:2011-08-20 Published:2018-12-03

Abstract: By using minimax methods in critical point theory,a new existence theorem of periodic solutions is obtained for a second-order ordinary p-Laplacian system.The result obtained generalizes some known works inthe literature.

Key words: periodic solution, minimax methods, critical point, ordinary p-Laplacian system

CLC Number: 

  • O189.1
[1] FEI Gui-hua.On periodic solutions of superquadratic Hamiltonian systems[J].Electron J Differential Equations,2002(8):1-12.
[2] LI Shu-jie,WILLEM M.Applications of local linking to critical point theory[J].J Math Anal Appl,1995,189(1):6-32.
[3] MAWHIN J,WILLEM M.Critical point theory and Hamiltonian systems[M].New York:Springer-Verlag,1989.
[4] RABINOWITZ P H.Minimax methods in critical point theory with applications to differential equations[M].Providence,RI:Amer Math Soc,1986.
[5] SCHECHTER M.Periodic non-autonomous second order dynamical systems[J].J Differential Equations,2006,223(2):290-302.
[6] SCHECHTER M.Periodic solutions of second order non-autonomous dynamical systems[J].Boundary Value Problems,2006(1):1-9.
[7] TAO Zhu-lian,TANG Chun-lei.Periodic solutions of second-orderHamiltonian systems[J].J Math Anal Appl,2004,293(2):435-445.
[8] TAO Zhu-lian,YAN Shang-an,WU Song-lin.Periodic solutions for aclass of superquadratic Hamiltonian systems[J].J Math Anal Appl,2007,331(1):152-158.
[9] TANG Chun-lei,WU Xing-ping.Notes on periodic solutions of subquadratic second order systems[J].J Math Anal Appl,2003,285(1):8-16.
[10] TIAN Yu,GE Wei-gao.Periodic solutions of non-autonomous second order systems with
p-Laplacian[J].Nonlinear Anal,2007,66(1):192-203.
[11] XU Bo,TANG Chun-lei.Some existence results on periodic solutions of ordinary
p-Laplacian systems[J].J Math Anal Appl,2007,333(2):1228-1236.
[12] AMBROSETTI A,RABINOWITZ P H.Dual variational methods in critical point theory and applications[J].J Funct Anal,1973,14(4):349-381.
[1] LÜ Xiaojun, ZHAO Kaihong, LI Rui. Multiple Positive Periodic Solutions of a Discrete Non-autonomousPlankton Allelopathy System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 66-73.
[2] ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44.
[3] XUE Jin-dong, FENG Chun-hua. Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!