Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (3): 14-17.

Previous Articles     Next Articles

On SS-Semipermutable Subgroups and p-Nilpotency of Finite Groups

ZHONG Xiang-gui, ZHAO Na, HUANG Xiu-nü, DUAN Jian-liang   

  1. College of Mathematical Science,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2011-03-26 Online:2011-08-20 Published:2018-12-03

Abstract: A subgroup H of a finite group G is said to be SS-semipermutable in G,if there exists a subgroup B of G such that HB —G,Sylp(B) Sylp(G),and H is permutable with every Sylow p-subgroup P of B for p∈π(G) with (p,|H|)=1.In this paper,p-nilpotence of finite groups is characterized,and some earlier results are unified and generalized.

Key words: finite group, SS-semipermutable subgroups, p-nilpotent groups

CLC Number: 

  • O152.1
[1] SRINIVASAN S.Two sufficient conditions for the supersolvabilityof finite groups[J].Isr J Math,1980,35:210-214.
[2] 陈重穆.Schur-Zassenhaus定理的推广[J].数学杂志,1998,18(3):290-294.
[3] 张勤海,王丽芳.
S-半置换子群对群结构的影响[J].数学学报,2005,48(1):81-88.
[4] RAMADAN M.Influence of normality on maximal subgroups of Sylow subgroups of a finite group[J].Acta Math Hungar,1992,59(1/2):107-110.
[5] WANG Li-fang,WANG Yan-ming.On
s-semipermutable maximal andminimal subgroups of sylow p-subgroups of finite groups[J].Comm Algebra,2006,34(1):143-149.
[6] LI Shi-rong,SHEN Zhen-cai,LIU Jian-jun,et al.The influence of
SS-quasinormality of some subgroups on the structure of finite groups[J].J Algebra,2008,319(10):4275-4287.
[7] LI Shi-rong,SHEN Zhen-cai,KONG Xiang-hong.On
SS-quasinormal subgroups of finite groups[J].Comm Algebra,2008,36(12):4436-4447.
[8] KEGEL O H.Sylow-gruppen und subnormalteiler endlicher gruppen[J].Math Z,1962,78(1):205-221.
[9] SCHMID P.Subgroups permutable with all Sylow subgroups[J].J Algebra,1998,207(1):285-293.
[10] TATE J.Nilpotent quotient groups[J].Topology,1964:3(S1):109-111.
[11] 裴旭莲,钟祥贵.共轭置换子群与群的幂零性[J].广西师范大学学报:自然科学版,2007,25(3):28-31.
[12] 徐明曜,黄建华,李慧陵,等.有限群导引:下册[M].北京:科学出版社,1999:67.
[1] WEI Huaquan, YUAN Weifeng, ZHOU Yuzhen, LI Xue, LI Min. On Generalized c#-subgroups of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 54-58.
[2] ZHONG Xianggui, SUN Yue, WU Xianghua. Nearly CAP*-Subgroups and p-Supersolvability of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 74-78.
[3] LÜ Yubo, WEI Huaquan, LI Min. The Influence of Nearly SS-embedded Subgroups on the p-nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 149-154.
[4] PENG Hong, ZHONG Xianggui, XIE Qing. Nearly SS-Quasinormal Subgroups and p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 45-49.
[5] ZHONG Xianggui, DING Ruifang, LING Simin. Influence of the Number of Conjugacy Classes of Nonsubnormal Subgroups on the Structure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 44-48.
[6] XIANG Rong, WU Yong, ZHONG Xiang-gui. NS*-quasinormal Subgroups and p-nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 63-67.
[7] SHI Jiang-tao, ZHANG Cui. Finite Non-solvable Groups with a Small Number of Conjugacy Classes of Non-trivial Cyclic Subgroups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 52-56.
[8] WU Yong, ZHONG Xiang-gui, JIANG Qing-zhi, ZHANG Xiao-fang. CSS-Quasinormal Subgroups and p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 60-63.
[9] ZHONG Xiang-gui, LI Yong-gang, ZHANG Fu-sheng, WUYong. Finite Nilpotent Groups with Automorphism Group of Order 16p1p2…pr [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 58-63.
[10] SHI Jiang-tao, ZHANG Cui, GUO Song-tao. A Note on Theorem of Shlyk [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 22-24.
[11] CHEN Yun-kun, LI Xian-hua. 2-maximal Subgroups of Sylow Subgroups and p-nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 31-34.
[12] LU Jia-kuan, MENG Wei. On π-quasinormal Subgroup of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 35-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!