Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 149-154.doi: 10.16088/j.issn.1001-6600.2019.01.017

Previous Articles     Next Articles

The Influence of Nearly SS-embedded Subgroups on the p-nilpotency of Finite Groups

LÜ Yubo, WEI Huaquan*, LI Min   

  1. College of Mathematics and Information Science, Guangxi University, Nanning Guangxi 530004, China
  • Received:2017-10-31 Online:2019-01-20 Published:2019-01-08

Abstract: A subgroup H is said to be nearly SS-embedded in a finite group G if there exists an s-permutable subgroup T of G such that HT is s-permutable in G and H∩T≤HseG,where HseG is the subgroup contained in H,generated by all those subgroups of H which are s-permutably embedded in G. Let Md(P)={P1,P2,…,Pd} be a set of the maximal subgroups of a group P of prime power order such that di=1Pi=Φ(P). The influence of the set Md(P) with the above property on the p-nilpotency of finite groups is investigated, and some recent related results are generalized.

Key words: finite group, s-permutable subgroup, s-permutably embedded subgroup, nearly SS-embedded subgroup, p-nilpotent group

CLC Number: 

  • O152.1
[1] GORENSTEIN D. Finite groups[M]. New York: Chelsea Publishing Company,1968.
[2] HUPPERT B. Endliche gruppen I[M]. New York: Springer-Verlag, 1967.
[3] 韦华全,刘秀,杨立英. 广义自同构与有限群结构[J]. 四川师范大学学报(自然科学版),2008,31(5):522-525.
[4] 卢若飞,韦华全,董淑琴,等. 具有某些X-半置换子群的有限群[J]. 四川师范大学学报(自然科学版),2013,36(1):39-43. DOI: 10.3969/j.issn.1001-8395.2013.01.008.
[5] 石向东,韦华全,马儇龙. 乘积因子群的共轭类长与有限群结构[J]. 郑州大学学报(理学版),2013,45(2):10-13. DOI:10.3969/j.issn/1671- 6841.2013.02.003.
[6] KEGEL O H. Sylow-gruppen und subnormalteiler endlicher gruppen[J]. Mathematische Zeitschrift,1962,78(1):205-221. DOI: 10.1007/BF01195169.
[7] BALLESTER-BOLINCHES A, PEDRAZA-AGUILERA M C.Sufficient condiction for supersolubility of finite groups[J]. Journal of Pure and Applied Algebra,1998,127(2):113-118. DOI: 10.1016/S0022-4049(96)00172-7.
[8] WEI Huaquan, WANG Yanming. On c*-normality and its properties[J]. Journal of Group Theory, 2007,10(2):211-223. DOI: 10.1515/JGT.2007.017.
[9] GUO Wenbin, WANG Yan. On nearly s-normal subgroup of finite groups[J]. Journal of Algebra and Discrete Structures,2008,6(2):95-106. DOI: 10.1080/00927870903286850.
[10] GUO Wenbin, LU Yi, NIU Wenjuan. s-embedded subgroups of finite groups[J]. Algebra and Logic,2010,49(4):293-304. DOI: 10.1007/s10469-010-9097-2.
[11] HUO Lijun, GUO Wenbin, MAKHNEV A A. On nearly SS-embedded subgroups of finite groups[J]. Chinese Annals of Mathematics,Series B,2014,35(6):885-894. DOI: 10.1007/s11401-014-0865-5.
[12] 彭红,钟祥贵,谢青. 几乎SS-嵌入子群与有限群的p-幂零性[J]. 广西师范大学学报(自然科学版),2017, 35(2):45-49. DOI: 10.16088/j.issn.1001-6600.2017.02.007.
[13] LI Shirong, SHEN Zhencai, LIU Jiajun, et al. The influence of SS-quasinormality of some subgroup on the structure of finite groups[J]. Journal of Algebra,2008,319(10):4275-4287. DOI: 10.1016/j.jalgebra.2008.01.030.
[14] WEI Huaquan, GU Weiping, PAN Hongfei. On c*-normal subgroups in finite groups[J]. Acta Mathematica Sinica English,2012,28(3):623-630. DOI: /10.1007/s10114-012-9226-z.
[15] LI Yangming, QIAO Shouhong, WANG Yanming. On weakly s-permutably embedded subgroups of finite groups[J]. Bulletin of the Australian Mathematical Society, 2009, 94(3):437-448. DOI: 10.1080/00927870802231197.
[16] SCHMID P. Subgroups permutable with all Sylow subgroups[J]. Journal of Algebra,1998,207(1):285-293. DOI: 10.1006/jabr.1998.7429.
[17] 郭文彬. 群类论[M]. 北京:科学出版社,1997.
[18] SKIBA A N. On weakly s-permutable subgroups of finite groups[J]. Journal of Algebra,2007,315(1):192-209. DOI: 10.1016/j.jalgebra.2007.04.025.
[1] WEI Huaquan, YUAN Weifeng, ZHOU Yuzhen, LI Xue, LI Min. On Generalized c#-subgroups of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 54-58.
[2] ZHONG Xianggui, SUN Yue, WU Xianghua. Nearly CAP*-Subgroups and p-Supersolvability of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 74-78.
[3] PENG Hong, ZHONG Xianggui, XIE Qing. Nearly SS-Quasinormal Subgroups and p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 45-49.
[4] ZHONG Xianggui, DING Ruifang, LING Simin. Influence of the Number of Conjugacy Classes of Nonsubnormal Subgroups on the Structure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 44-48.
[5] XIANG Rong, WU Yong, ZHONG Xiang-gui. NS*-quasinormal Subgroups and p-nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 63-67.
[6] SHI Jiang-tao, ZHANG Cui. Finite Non-solvable Groups with a Small Number of Conjugacy Classes of Non-trivial Cyclic Subgroups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 52-56.
[7] WU Yong, ZHONG Xiang-gui, JIANG Qing-zhi, ZHANG Xiao-fang. CSS-Quasinormal Subgroups and p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 60-63.
[8] ZHONG Xiang-gui, LI Yong-gang, ZHANG Fu-sheng, WUYong. Finite Nilpotent Groups with Automorphism Group of Order 16p1p2…pr [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 58-63.
[9] SHI Jiang-tao, ZHANG Cui, GUO Song-tao. A Note on Theorem of Shlyk [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 22-24.
[10] ZHONG Xiang-gui, ZHAO Na, HUANG Xiu-nü, DUAN Jian-liang. On SS-Semipermutable Subgroups and p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 14-17.
[11] CHEN Yun-kun, LI Xian-hua. 2-maximal Subgroups of Sylow Subgroups and p-nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 31-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!