Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 155-164.doi: 10.16088/j.issn.1001-6600.2019.01.018

Previous Articles     Next Articles

FI-gr-injective Modules

LIU-TIAN Lilian1 , WANG Fanggui1*, GAO Zenghui2   

  1. 1. College of Mathematics and Software Science, Sichuan Normal University, Chengdu Sichuan 610066, China;
    2. College of Applied Mathematics, Chengdu University of Information Technology, Chengdu Sichuan 610225, China
  • Received:2018-01-12 Published:2019-01-08

Abstract: In this paper, the notions of FI-gr-injective modules and strongly FI-gr-injective modules are introduced, and the relationship between them and graded injective modules is explained. It is proved that the graded ring R is a gr-QF ring if and only if each graded module is a strongly FI-gr-injective module; suppose R is a left gr-coherent ring, then l.FP-gr-dim(R)≤1 if and only if each FI-gr-injective module is a graded injective module. In addition, it is also proved that l.gr-fiD(R)=sup{gr-pd(L)|L is an FP-gr-injective module}.

Key words: FI-gr-injective modules, strongly FI-gr-injective modules, FI-gr-injective dimensions, FP-gr-injective modules

CLC Number: 

  • O154
[1] STENSTRÖM B. Coherent rings and FP-injective modules[J]. Journal of the London Mathematical Society, 1970, 2(2): 323-329. DOI:10.1112/jlms/s2-2.2.323.
[2] MADDOX B H. Absolutely pure modules[J]. Proceedings of the American Mathematical Society, 1967, 18(1): 155-158. DOI:10.2307/2035245.
[3] MAO L X, DING N Q. FI-injective and FI-flat modules[J]. Journal of Algebra, 2007, 309(1):367-385. DOI:10.1016/j.jalgebra.2006.10.019.
[4] GAO Z H. On n-FI-Injective and n-FI-Flat Modules[J]. Communications in Algebra, 2012, 40(8):2757-2770. DOI:10.1080/00927872.2011.585677.
[5] ASENSIO M J, RAMOS J A L, TORRECILLAS B. FP-gr-injective modules and gr-FC-rings[J]. Algebra and Number Theory, 1999:1-11. DOI:10.1201/9780203903889.ch1.
[6] YANG X Y, LIU Z K. FP-gr-injective modules[J]. Mathematica Journal of Okayama University, 2011,53: 83-100.
[7] MAO L X. Strongly Gorenstein graded modules[J]. Frontiers of Mathematics in China, 2016, 12(1):1-20. DOI:10.1007/s11464-016-0595-y.
[8] NASTASESCU C, OYSTAEYEN F V. Methods of Graded Rings[M]. New York: Springer, 2004:25-286.
[9] ROZAS J G, RAMOS J A L, TORRECILLAS B. On the existence of flat covers in R-gr[J]. Communications in Algebra, 2001, 29(8):3341-3349. DOI:10.1081/AGB-100105025.
[10] OYONARTE L, TORRECILLAS B. Large subdirect products of graded modules[J]. Communications in Algebra, 1999, 27(2): 681-701. DOI:10.1080/00927879908826456.
[11] NASTASESCU C, OYSTAEYEN F V. Graded Ring Theory[M]. New York: North-Holland Publishing Company, 1982:52-61.
[12] MAO L X, DING N Q. Envelopes and covers by modules of finite injective and flat dimensions[J]. Communications in Algebra, 2007,35(3): 833-849. DOI:10.1080/00927870601115757.
[13] HUSSIEN S E D S, EL-SEIDY E, TABARAK M E. Graded injective modules and graded quasi-frobenius rings[J]. Applied Mathematical Sciences, 2015, 9(23): 1113-1123. DOI:10.12988/ams.2015.4121036.
[14] KRASNOVA E N. Graded quasi-Frobenius rings[C]//Proceedings XII International Conference Algebra and Number Theory: Modern Problems and Application, dedicated to 80-th anniversary of Professor V.N.Latyshev. [S.l.:s.n.],2014: 88-90.
[15] 吴娜. FP-gr-投射维数和FP-gr-投射模[D]. 南京:南京师范大学, 2013.
[16] NASTASESCU C. Strongly graded rings of finite groups[J]. Communications in Algebra, 1983, 11(11): 1033-1071. DOI:10.1080/00927872.1983.10487600.
[17] 王芳贵. 交换环与星型算子理论[M]. 北京: 科学出版社, 2006:104-173.
[18] ROTMAN J J. An introduction to homological algebra[M].New York: Springer, 2009:418-421.
[19] KIRKMAN E, KUZMANOVICH J. Matrix subrings having finite global dimension[J]. Journal of Algebra, 1987, 109(1):74-92. DOI:10.1016/0021-8693(87)90165-7.
[20] XU J Z. Flat covers of modules[M]. New York: Springer, 1996:27-28.
[1] WANG Xi, WANG Fanggui, SHEN Lei. Results on ${\ell}$n-Flat Modules [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 47-53.
[2] LIANG Chunmei, WANG Fanggui, WU Xiaoying. Graded Simple Injective Modules and Their Characterization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 113-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!