Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 85-100.doi: 10.16088/j.issn.1001-6600.2024041201

Previous Articles     Next Articles

Physicochemical, Functional and Structural Properties of Citrus Peel and Pomace Powders Affected by Different Physical Treatments

PENG Liting1,2,3,4, RUAN Ruimei1,2,3,4, ZHAO Guanghe1,2,3,4*, ZHAO Fengli1,2,3,4, QIN Yunbin1,2,3,4   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Enviromental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    4. Institute of Applied Biology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2024-04-12 Revised:2024-05-18 Online:2025-01-05 Published:2025-02-07

Abstract: Citrus peel and pomace are by-products of citrus juice processing industry and are known for their abundance of high-quality dietary fiber. However, the traditional method of preparing citrus fiber involves the use of chemicals, which not only contributes to environmental pollution but also results in resource wastage. In light of the principle of comprehensive utilization, this study seeks to develop a physical processing technique for citrus fiber concentrate. The physicochemical, functional, and structural characteristics of citrus peel and pomace powders following modification through ultra-high pressure, superfine grinding, and soaking-autoclaving treatments are investigated, respectively. Compared with ultra-high pressured and superfine ground citrus peel and pomace powders, soaking-autoclaved counterparts exhibit superior physicochemical and functional properties, albeit slightly darker color that might impose limitation on their utilizations in light-colored food products. These findings offer new perspectives on how to prepare high-value citrus fiber concentrateas functional food ingredients.

Key words: citrus peel, citrus pomace, dietary fiber, ultra-high pressure, superfine grinding, soaking-autoclaving

CLC Number:  TS209
[1] YAO B D, FANG H, XU W H, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies[J]. European Journal of Epidemiology, 2014, 29(2): 79-88. DOI: 10.1007/s10654-013-9876-x.
[2] HAN Y, JANG K, KIM U, et al. The possible effect of dietary fiber intake on the metabolic patterns of dyslipidemia subjects: cross-sectional research using nontargeted metabolomics[J]. The Journal of Nutrition, 2023, 153(9): 2552-2560. DOI: 10.1016/J.TJNUT.2023.07.014.
[3] LIU X, YANG W S, PETRICK J L, et al. Higher intake of whole grains and dietary fiber are associated with lower risk of liver cancer and chronic liver disease mortality[J]. Nature Communications, 2021, 12(1): 6388. DOI: 10.1038/S41467-021-26448-9.
[4] KALUZA J, HARRIS H, WALLIN A, et al. Dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of men[J]. Epidemiology, 2018, 29(2): 254-260. DOI: 10.1097/EDE.0000000000000750.
[5] YUSUF K, SAHA S, UMAR S. Health benefits of dietary fiber for the management of inflammatory bowel disease[J]. Biomedicines, 2022, 10(6): 1242. DOI: 10.3390/BIOMEDICINES10061242.
[6] PROKOPIDIS K, GIANNOS P, ISPOGLOU T, et al. Dietary fiber intake is associated with cognitive function in older adults: data from the national health and nutrition examination survey[J]. The American Journal of Medicine, 2022, 135(8): e257-e262. DOI: 10.1016/J.AMJMED.2022.03.022.
[7] FU L M, ZHANG G B, QIAN S S, et al. Associations between dietary fiber intake and cardiovascular risk factors: an umbrella review of meta-analyses of randomized controlled trials[J]. Frontiers in Nutrition, 2022, 9: 972399. DOI: 10.3389/FNUT.2022.972399.
[8] DESAI M S, SEEKATZ A M, KOROPATKIN N M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5): 1339-1353. DOI: 10.1016/j.cell.2016.10.043.
[9] MONTEIRO S S, DE OLIVEIRA V M, DE BITTENCOURT PASQUALI M A. Probiotics in citrus fruits products: health benefits and future trends for the production of functional foods-a bibliometric review[J]. Foods, 2022, 11(9): 1299. DOI: 10.3390/FOODS11091299.
[10] HE C A, QI J R, LIAO J S, et al. Excellent hydration properties and oil holding capacity of citrus fiber: effects of component variation and microstructure[J]. Food Hydrocolloids, 2023, 144: 108988. DOI: 10.1016/j.foodhyd.2023.108988.
[11] DENG M, ZHANG S, DONG L H, et al. Shatianyu (Citrus grandis L. Osbeck) flavonoids and dietary fiber in combination are more effective than individually in alleviating high-fat-diet-induced hyperlipidemia in mice by altering gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2022, 70(46): 14654-14664. DOI: 10.1021/acs.jafc.2c03797.
[12] FAN R, WANG L, FAN J F, et al. The pulsed electric field assisted-extraction enhanced the yield and the physicochemical properties of soluble dietary fiber from orange peel[J]. Frontiers in Nutrition, 2022, 9: 925642. DOI: 10.3389/FNUT.2022.925642.
[13] ZHOU L N, LUO J Q, XIE Q T, et al. Dietary fiber from navel orange peel prepared by enzymatic and ultrasound-assisted deep eutectic solvents: physicochemical and prebiotic properties[J]. Foods 2023, 12(10): 2007. DOI: 10.3390/FOODS12102007.
[14] SONG L W, QI J R, LIAO J S, et al. Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment[J]. Food Hydrocolloids, 2021, 121: 107015. DOI: 10.1016/J.FOODHYD.2021.107015.
[15] BALNY C. High pressure and protein oligomeric dissociation[J]. High Pressure Research, 2002, 22(3/4): 737-741. DOI: 10.1080/08957950212447.
[16] 陶虹.超声波预处理对糙米品质与萌芽性能的影响[D].上海:上海交通大学,2020. DOI: 10.27307/d.cnki.gsjtu.2018.000983.
[17] OUYANG H, GUO B L, HU Y, et al. Effect of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets[J]. Food Bioscience, 2023, 52: 102436. DOI: 10.1016/J.FBIO.2023.102436.
[18] YU G Y, BEI J, ZHAO J, et al. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure[J]. Food Chemistry, 2018, 257: 333-340. DOI: 10.1016/j.foodchem.2018.03.037.
[19] SANG J Q, LI J, WEN J, et al. Chemical composition, structural and functional properties of insoluble dietary fiber obtained from the Shatian pomelo peel sponge layer using different modification methods[J]. LWT, 2022, 165: 113737. DOI: 10.1016/J.LWT.2022.113737.
[20] WANG F, ZENG J, GAO H Y, et al. Effects of different physical technology on compositions and characteristics of bean dregs[J]. Innovative Food Science & Emerging Technologies, 2021, 73: 102789. DOI: 10.1016/J.IFSET.2021.102789.
[21] LIU Y H, WANG L F, LIU F X, et al. Effect of grinding methods on structural, physicochemical, and functional properties of insoluble dietary fiber from orange peel[J]. International Journal of Polymer Science, 2016, 2016: 6269302. DOI: 10.1155/2016/6269302.
[22] CHAU C F, WANG Y T, WEN Y L. Different micronization methods significantly improve the functionality of carrot insoluble fibre[J]. Food Chemistry, 2007, 100(4): 1402-1408. DOI: 10.1016/j.foodchem.2005.11.034.
[23] YE F Y, TAO B B, LIU J, et al. Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace[J]. Food Science and Technology International, 2016, 22(3): 246-255. DOI: 10.1177/1082013215593394.
[24] ZHU F M, DU B, LI J. Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace[J]. Food Science and Technology International, 2014, 20(1): 55-62. DOI: 10.1177/1082013212469619.
[25] 钟艳萍.水溶性膳食纤维的制备及性能研究[D].广州:华南理工大学,2011.
[26] 吴立根.加工对藜麦营养品质影响及机理研究[D].郑州:河南工业大学,2021. DOI: 10.27791/d.cnki.ghegy.2021.000538.
[27] ÖZKAYA B, TURKSOY S, ÖZKAYA H, et al. Dephytinization of wheat and rice brans by hydrothermal autoclaving process and the evaluation of consequences for dietary fiber content, antioxidant activity and phenolics[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 209-215. DOI: 10.1016/j.ifset.2016.11.012.
[28] ÖZKAYA H, ÖZKAYA B, DUMAN B, et al. Effect of dephytinization by fermentation and hydrothermal autoclaving treatments on the antioxidant activity, dietary fiber, and phenolic content of oat bran[J]. Journal of Agricultural and Food Chemistry, 2017, 65(28): 5713-5719. DOI: 10.1021/acs.jafc.7b01698.
[29] ZHAO G H, HU M Q, LU X W, et al. Soaking, heating and high hydrostatic pressure treatment degrade the flavonoids in rice bran[J]. LWT, 2022, 154: 112732. DOI: 10.1016/j.lwt.2021.112732.
[30] 王伟.柑橘果皮全粉的制备及其粉体相关特性研究[D].武汉:华中农业大学,2013.
[31] RAGHAVENDRA S N, RASTOGI N K, RAGHAVARAO K S M S, et al. Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties[J]. European Food Research and Technology, 2004, 218(6): 563-567. DOI: 10.1007/s00217-004-0889-2.
[32] FEMENIA A, LEFEBVRE A C, THEBAUDIN J Y, et al. Physical and sensory properties of model foods supplemented with cauliflower fiber[J]. Journal of Food Science,1997, 62(4): 635-639. DOI: 10.1111/j.1365-2621.1997.tb15426.x.
[33] GONG Z Q, ZHANG M, MUJUMDAR A S, et al. Spray drying and agglomeration of instant bayberry powder[J]. Drying Technology, 2007, 26(1): 116-121. DOI: 10.1080/07373930701781751.
[34] CHAU C F, HUANG Y L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel ofCitrus sinensis L. Cv. Liucheng[J]. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2615-2618. DOI: 10.1021/jf025919b.
[35] ZHAO G H, ZHANG R F, DONG L H, et al. Bound phenolics in rice bran dietary fibre released by different chemical hydrolysis methods: content, composition and antioxidant activities[J]. International Journal of Food Science & Technology, 2022, 57(9): 5909-5916. DOI: 10.1111/ijfs.15915.
[36] CHEN J L, GAO D X, YANG L T, et al. Effect of microfluidization process on the functional properties of insoluble dietary fiber[J]. Food Research International, 2013, 54(2): 1821-1827. DOI: 10.1016/j.foodres.2013.09.025.
[37] CHEN H, XIONG M, BAI T M, et al. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat[J]. LWT, 2021, 149: 111816. DOI: 10.1016/J.LWT.2021.111816.
[38] ZHU F M, DU B, XU B J. Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China[J]. Journal of Cereal Science, 2015,65: 43-47. DOI: 10.1016/j.jcs.2015.06.006.
[39] SEGAL L, CREELY J J, MARTIN A E, Jr, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794. DOI: 10.1177/004051755902901003.
[40] YAN H, BARBOSA-CÁNOVAS G V. Density changes in selected agglomerated food powders due to high hydrostatic pressure[J]. LWT-Food Science and Technology, 2001, 34(8): 495-501. DOI: 10.1006/fstl.2000.0724.
[41] CASTELLANOS A. The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders[J]. Advances in Physics, 2005, 54(4): 263-376. DOI: 10.1080/17461390500402657.
[42] LI Q, RUDOLPH V, WEIGL B, et al. Interparticle van der Waals force in powder flowability and compactibility[J]. International Journal of Pharmaceutics, 2004, 280(1/2): 77-93. DOI: 10.1016/j.ijpharm.2004.05.001.
[43] HUANG X, LIANG K H, LIU Q, et al. Superfine grinding affects physicochemical, thermal and structural properties of Moringa oleifera leaf powders[J]. Industrial Crops and Products, 2020, 151: 112472. DOI: 10.1016/j.indcrop.2020.112472.
[44] MATEOS-APARICIO I, MATEOS-PEINADO C, RUPÉREZ P. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean[J]. Innovative Food Science & Emerging Technologies, 2010, 11(3): 445-450. DOI: 10.1016/j.ifset.2010.02.003.
[45] WANG Q, SHEN P Y, CHEN B C. Ultracentrifugal milling and steam heating pretreatment improves structural characteristics, functional properties, andin vitro binding capacity of cellulase modified soy okara residues[J]. Food Chemistry, 2022, 384: 132526. DOI: 10.1016/J.FOODCHEM.2022.132526.
[46] 金文筠,SHEHZAD H,严守雷,等.超微粉碎对藕节膳食纤维理化性质的影响[J].食品安全质量检测学报,2015,6(6):2071-2076. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2015.06.019.
[47] CHAU C F, WEN Y L, WANG Y T. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres[J]. Journal of the Science of Food and Agriculture, 2006, 86(14): 2380-2386. DOI: 10.1002/jsfa.2628.
[48] 易甜,崔文文,王明锐,等.锦橙皮渣膳食纤维微粉化及其功能特性分析[J].食品科学,2019,40(10):8-14. DOI: 10.7506/spkx1002-6630-20180615-330.
[49] ZHAO G H, HU C Y, LUO H Y. Effects of combined microwave-hot-air-drying on the physicochemical properties and antioxidant activity of Rhodomyrtus tomentosa berry powder[J]. Journal of Food Measurement and Characterization, 2020, 14(3): 1433-1442. DOI: 10.1007/s11694-020-00393-5.
[50] ZHENG Y J, WANG X Y, SUN Y, et al. Effects of ultrafine grinding and cellulase hydrolysis separately combined with hydroxypropylation, carboxymethylation and phosphate crosslinking on the in vitro hypoglycaemic and hypolipidaemic properties of millet bran dietary fibre[J]. LWT, 2022, 172: 114210. DOI: 10.1016/J.LWT.2022.114210.
[51] 王丹丹.豆渣超高压、超微粉碎及超声波辅助化学处理的研究[D].郑州:河南农业大学,2013. DOI: 10.7666/d.Y2432476.
[52] KIM D, HANG D. High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran[J]. Innovative Food Science & Emerging Technologies, 2012, 16: 191-197. DOI: 10.1016/j.ifset.2012.05.014.
[53] 赵广河,张名位,张瑞芬,等.气流超微粉碎对桃金娘果粉物理化学性质的影响[J].食品科学,2016,37(1):17-21. DOI: 10.7506/spkx1002-6630-201601004.
[54] KOH C, JANG M G, OH J M, et al. Changes in chemical composition and antioxidant activity of dried Citrus unshiu peel after roasting[J]. LWT, 2020, 131: 109612. DOI: 10.1016/j.lwt.2020.109612.
[55] 徐倩,叶怀义,叶暾昊,等.超高压对果胶聚半乳糖醛酸酶的影响[J].哈尔滨商业大学学报(自然科学版),2003(2):194-196,201. DOI: 10.19492/j.cnki.1672.0946.2003.02.020.
[56] FENG X Y, YU B, REGENSTEIN J M, et al. Effect of particle size on composition, physicochemical, functional, and structural properties of insoluble dietary fiber concentrate from citrus peel[J]. Food Science and Technology International, 2023, 29(3): 195-203. DOI: 10.1177/10820132211063973.
[57] 吴晓江,范浩伟,付桂明,等.过热蒸气处理对苦荞粉理化性质的影响[J].食品与发酵工业,2021,47(11):89-97. DOI: 10.13995/j.cnki.11-1802/ts.025748.
[58] AKBARI M, RAZAVI S H, KHODAIYAN F, et al. Fermented corn bran: A by-product with improved total phenolic content and antioxidant activity[J]. LWT, 2023, 184: 115090. DOI: 10.1016/J.LWT.2023.115090.
[59] CHEN Y, PAN H L, HAO S X, et al. Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus[J]. Food Chemistry, 2021, 364: 130413. DOI: 10.1016/J.FOODCHEM.2021.130413.
[60] 郑慧.苦荞麸皮超微粉碎及其粉体特性研究[D].杨凌:西北农林科技大学,2007.
[61] DANG T T, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloids, 2019, 89: 773-782. DOI: 10.1016/j.foodhyd.2018.11.024.
[62] OUYANG H, WU L, HU Y, et al. Effect of steam explosion treatment on physicochemical, functional and structural properties of pomelo fruitlets[J]. LWT, 2023, 184: 114963. DOI: 10.1016/J.LWT.2023.114963.
[63] ZHAO X Y, CHEN J, CHEN F L, et al. Surface characterization of corn stalk superfine powder studied by FTIR and XRD[J]. Colloids and Surfaces B: Biointerfaces, 2013, 104: 207-212. DOI: 10.1016/j.colsurfb.2012.12.003.
[64] XU W L, CUI W G, LI W B, et al. Development and characterizations of super-fine wool powder[J]. Powder Technology, 2004, 140(1/2): 136-140. DOI: 10.1016/j.powtec.2003.12.010.
[65] HARADA T, TOKAI Y, KIMURA A, et al. Hydrolysis of crystalline cellulose to glucose in an autoclave containing both gaseous and liquid water[J]. RSC Advances, 2014, 4(51): 26838-26842. DOI: 10.1039/c4ra02396j.
[66] ROUHOU C M, ABDELMOUMEN S, THOMAS S, et al. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies[J]. International Journal of Biological Macromolecules, 2018, 116: 901-910. DOI: 10.1016/j.ijbiomac.2018.05.090.
[67] CHEN P C, LIN C, CHEN M H, et al. The micronization process for improving the dietary value of okara (soybean residue) by planetary ball milling[J]. LWT, 2020, 132: 109848. DOI: 10.1016/j.lwt.2020.109848.
[68] ULLAH I, YIN T, XIONG S B, et al. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling[J]. LWT-Food Science and Technology, 2017, 82: 15-22. DOI: 10.1016/j.lwt.2017.04.014.
[69] WANG D W, LIU X W, WANG K, et al. Impact of non-thermal modifications on the physicochemical properties and functionality of litchi pomace dietary fibre[J]. LWT, 2023, 182: 114878. DOI: 10.1016/J.LWT.2023.114878.
[70] WEN Y, NIU M, ZHANG B J, et al. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments[J]. LWT, 2017, 75: 344-351. DOI: 10.1016/j.lwt.2016.09.012.
[71] ROPELEWSKA E. Thermal properties of fresh and dried cranberry (Vaccinium macrocarpon) fruits determined by differential scanning calorimetry and thermogravimetric analysis[J]. Journal of Food Process Engineering, 2019, 42(4): e13061. DOI: 10.1111/jfpe.13061.
[72] ZLATANOVIĆ S, OSTOJIĆ S, MICIĆ D, et al. Thermal behaviour and degradation kinetics of apple pomace flours[J]. Thermochimica Acta, 2019, 673: 17-25. DOI: 10.1016/j.tca.2019.01.009.
[73] ZHANG Y, LIAO J S, QI J R. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment[J]. LWT, 2020, 128: 109397. DOI: 10.1016/j.lwt.2020.109397.
[1] WANG Yuerong, ZHAO Guanghe, ZHAO Fengli, QIN Yunbin, CHEN Jing, ZHANG Hong. Optimization of Extraction Process of Navel Orange Peel Soluble Dietary Fiber and Its in vitro Prebiotic Activity Evaluation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 101-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[2] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .