Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 124-136.doi: 10.16088/j.issn.1001-6600.2023102201
Previous Articles Next Articles
KANG Huigang, YU Bo*
[1] FELDMAN M. Hilbert transform in vibration analysis[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 735-802. [2] FELDMAN M. Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems[J]. Mechanical Systems and Signal Processing, 2014, 47(1/2): 66-77. [3] 杨诚, 胡美龙. 基于希尔伯特变换的信号优先级排序法在车内异响源识别中的应用[J]. 噪声与振动控制, 2016, 36(3) : 115-121. [4] 郭铁梁, 李志军, 张文祥. 基于希尔伯特变换的带通信号包络频谱分析及Matlab仿真[J]. 高师理科学刊, 2020, 40(8) : 72-77. [5] KING F W. Hilbert transforms: Volume 1[M]. New York: Cambridge University Press, 2009. [6] MARPLE L. Computing the discrete-time analytic signal via FFT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2600-2603. [7] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1998, 454(1971): 903-995. [8] 郭一楠, 邵慧杰, 巩敦卫, 等. 基于希尔伯特黄变换和深度卷积神经网络的房颤检测[J]. 电子与信息学报, 2022, 44(1) : 99-106. [9] 孙晓云, 周文佳, 程久龙, 等. 基于二维HHT的隧道超前探测图像识别与检测[J]. 广西师范大学学报(自然科学版), 2014, 32(1): 26-31. [10] 李辉, 何之煜, 颉洪睿. 基于希尔伯特黄变换的机车信号解调算法研究[J]. 计算机仿真, 2023, 40(8): 136-140. [11] ZHOU C Y, YANG L H, LIU Y J, et al. A novel method for computing the Hilbert transform with Haar multiresolution approximation[J]. Journal of Computational and Applied Mathematics, 2009, 223(2): 585-597. [12] MICCHELLI C A, XU Y S, YU B. On computing with the Hilbert spline transform[J]. Advances in Computational Mathematics, 2013, 38(3): 623-646. [13] BILATO R, MAJ O, BRAMBILLA M. An algorithm for fast Hilbert transform of real functions[J]. Advances in Computational Mathematics, 2014, 40(5): 1159-1168. [14] ABD-EL-MALEK M B, HANNA S S. The Hilbert transform of cubic splines[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 80: 104983. [15] 覃潇潇, 余波. 利用四阶样条快速计算信号的希尔伯特变换[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 126-135. [16] CHUI C K. An introduction to wavelets[M]. Boston: Academic Press, 1992. [17] UNSER M, ALDROUBI A, SCHIFF S J. Fast implementation of the continuous wavelet transform with integer scales[J]. IEEE Transactions on Signal Processing, 1994, 42(12) : 3519-3523. [18] CHUI C K, WANG J Z. On compactly supported spline wavelets and a duality principle[J]. Transactions of the American Mathematical Society, 1992, 330(2): 903-915. [19] CHEN Q H, HUANG N, RIEMENSCHNEIDER S, et al. A B-spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics, 2006, 24(1): 171-195. |
[1] | QIN Xiaoxiao, YU Bo. Fast Algorithm for the Hilbert Transform of a Signalby Using Cubic Splines [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 126-135. |
|