Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 115-123.doi: 10.16088/j.issn.1001-6600.2023092003

Previous Articles     Next Articles

Research on Proportion of Out-of-Pocket Medical Expenses Based on Non-parametric Test and Multivariate Regression

CAI Xuefeng1, LI Tianjun2, HUANG Lei1*   

  1. 1. School of Mathematics, Southwest Jiaotong University, Chengdu Sichuan 611756, China;
    2. Office of Medical Insurance, West China Hospital, Sichuan University, Chengdu Sichuan 610041, China
  • Received:2023-09-20 Revised:2023-11-15 Online:2024-07-25 Published:2024-09-05

Abstract: Medical insurance reform and medical expenses are people’s important livelihood issues. People pay attention to whether there are differences in the proportion of medical expenses paid by different types of medical insurance and the influencing factors of medical expenses. In this paper, the discharge settlement data of type 2 diabetes patients in the secretion department of a tertiary class-Ⅲ-A hospital in Chengdu, Sichuan Province are analyzed from January 2020 to December 2021 by using the high-dimensional permutation test and the interaction effect model to explore whether there is a significant difference in the medical expense out-of-pocket ratio between urban and rural resident medical insurance patients and urban employee medical insurance patients and the influencing factors of the medical expense out-of-pocket ratio, so as to provide a basis for the subsequent reform of medical insurance. The results of the study show that there are significant differences in the medical expense out-of-pocket ratio of patients with two types of medical insurance, and the increase of various expense ratios such as examination expense ratio would increase the medical expense out-of-pocket ratio. Moreover, under low dimensions, the results of the high-dimensional permutation test method used in this paper are consistent with those of the Hotelling T2 permutation test.

Key words: medical insurance, medical expenses, high dimensional permutation test, interaction effect, multivariate regression

CLC Number:  O212.1;R197.1
[1] 柏星驰, 黎艳娜, 程薇,等. 人口年龄增长对医疗费用的影响分析[J]. 中国卫生经济, 2022, 41(10): 40-43,53.
[2] 赵敏, 李政, 罗镭, 等. 云南省某三级肿瘤专科医院子宫颈病变患者住院医疗费用影响因素分析[J]. 现代医院, 2022, 22(9): 1398-1401. DOI: 10.3969/j.issn.1671-332X.2022.09.022.
[3] TALOBA A I, ABD EL-AZIZ R M, ALSHANBARI H M, et al. Estimation and prediction of hospitalization and medical care costs using regression in machine learning[J]. Journal of Healthcare Engineering, 2022, 2022: 7969220. DOI: 10.1155/2022/7969220.
[4] 周明华, 谭红, 何思长, 等. 四川省内中医医院医疗费用结构变动分析[J]. 中国卫生质量管理, 2022, 29(8): 33-36. DOI: 10.13912/j.cnki.chqm.2022.29.08.08.
[5] 邓世康, 王培刚. 日本医疗费用合理化计划的政策变迁及经验启示[J].社会保障研究, 2022(5):75-88. DOI: 10.3969/j.issn.1674-4802.2022.05.007.
[6] 杨赫祎, 冯玉, 李天俊,等. 基于特征筛选与机器学习的医疗保险报销比例预测研究[J]. 中国循证医学杂志, 2023, 23(4): 373-378. DOI: 10.7507/1672-2531.202205076.
[7] 闫晓芳, 史静琤, 程文炜,等. 中老年人因超重和肥胖导致的自付医疗费用研究[J]. 中国卫生统计, 2019, 36(1): 22-27. DOI: 10.3969/j.issn.1002-3674.2019.01.005.
[8] 姚静静, 王海鹏, 孙强. 山东省2型糖尿病患者自付医疗费用和疾病经济风险现状分析[J]. 中国卫生政策研究, 2019, 12(7): 75-80. DOI: 10.3969/j.issn.1674-2982.2019.07.012.
[9] ZHANG L F, LIU N. Health reform and out-of-pocket payments:lessons from China[J]. Health Policy and Planning, 2014, 29(2): 217-226. DOI: 10.1093/heapol/czt006.
[10] CHEN M S, CHEN W, ZHAO Y X. New evidence on financing equity in China’s health care reform-a case study on Gansu province, China[J]. BMC Health Servres, 2012, 12: 466. DOI: 10.1186/1472-6963-12-466.
[11] VAN MINH H, KIM PHUONG N T, SAKSENA P, et al. Financial burden of household out-of pocket health expenditure in Viet Nam: findings from the National Living Standard Survey 2002-2010[J]. Social Science & Medicine, 2013, 96: 258-263. DOI: 10.1016/j.socscimed.2012.11.028.
[12] KONG E F, WANG L Y, XIA Y C, et al. A permutation test for two-sample means and signal identification of high-dimensional data[J]. Statistica Sinica, 2022, 32(1): 89-108. DOI: 10.5705/ss.202019. 0425.
[13] XUE K J, YAO F. Distribution and correlation-free two-sample test of high dimensional means[J]. The Annals of Statistics, 2020, 48(3): 1304-1328. DOI: 10.1214/19-AOS1848.
[14] CHANG J Y, ZHENG C, ZHOU W X, et al. Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity[J]. Biometrics, 2017, 73(4): 1300-1310. DOI: 10.1111/biom.12695.
[15] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723. DOI: 10.1109/TAC.1974.1100705.
[16] 刘志坚. 数字经济发展、科技创新与出口技术复杂度[J]. 统计与决策, 2021, 37(17): 29-34. DOI: 10.13546/j.cnki.tjyjc.2021.17.006.
[17] 李郁, 曹颖. 人力资本与社会资本交互项影响贫困的地区异质性研究:基于绝对贫困与相对贫困视角[J]. 北京邮电大学学报(社会科学版), 2021, 23(4): 42-51. DOI: 10.19722/j.cnki.1008-7729.2021.0028.
[18] 杜洁瑞, 崔霞, 李元. 基于Rubin因果模型的处理变量与协变量的交互效应估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 122-130. DOI: 10.16088/j.issn.1001-6600.2022010502.
[19] 刘盼盼. 精细化医保管理对城乡居民基本医保整合改革的影响[J]. 中国民商, 2021(4): 254,264. DOI: 10.3969/j.issn.2095-5286.2021.04.179.
[20] 王芳. 精细化医保管理推进城乡居民医疗保险整合改革[J]. 中国现代医药杂志, 2020, 22(1): 96-97. DOI: 10.3969/j.issn.1672-9463.2020.01.029.
[21] 娄洪, 应亚珍. 深化中国特色医保改革:目标明确、路径清晰[J]. 中国医疗保险, 2020(4): 10-12.
[22] 何小华, 马效恩, 李静, 等. 济南市城镇居民医保改革在基层医院的影响与对策[J]. 特别健康, 2018(16): 267-269. DOI: 10.3969/j.issn.2095-6851.2018.16.407.
[23] 耿嘉川. 浅析城乡居民基本医保的整合[J]. 东岳论丛, 2014, 35(5): 167-171. DOI: 10.15981/j.cnki.dongyueluncong.2014.05.004.
[24] 杨竹青. 出院患者住院费用分析[J]. 中国卫生产业, 2018, 15(10): 109-111. DOI: 10.16659/j.cnki.1672-5654.2018.10.109.
[25] 叶小巾, 王秀云. 城镇职工医保患者住院医疗费用构成及影响因素分析[J]. 中国卫生统计, 2019, 36(6): 903-905.
[26] 罗石梅. 医院管理与医疗保险的关系与利益研究[J]. 临床医学研究与实践, 2016, 1(20): 195-196. DOI: 10.19347/j.cnki.2096-1413.2016.20.117.
[27] 吕红亮, 赵少峰, 谢小萍,等. 四川省16866例肺癌患者住院费用影响因素分析[J]. 中国循证医学杂志, 2013, 13(11): 1283-1287. DOI: 10.7507/1672-2531.20130220.
[28] 李环, 张治国, 李程洪, 等. 我国各省医用耗材集中带量采购政策比较分析[J]. 中国卫生政策研究, 2021, 14(3): 48-56. DOI: 10.3969/j.issn.1674-2982.2021.03.008.
[29] 朱倩, 吴航, 徐静晗, 等. 公立医院医用耗材成本管控模式的探索[J]. 中国卫生经济, 2020, 39(4): 81-83. DOI: 10.7664/CHE20200421.
[1] DU Jierui, CUI Xia, LI Yuan. Estimating Interaction Effects Between a Treatment and Covariates Using the Rubin Causal Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .