Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 152-158.doi: 10.16088/j.issn.1001-6600.2023071202

Previous Articles     Next Articles

Triphenylphosphine/NBS-Catalyzed Beckmann Rearrangement of Ketoximes into Amides

XIE Jianwu*, YE Yuefeng, XIE Xuansheng   

  1. School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an Shaanxi 710021, China
  • Received:2023-07-12 Revised:2023-10-13 Published:2024-04-22

Abstract: A Beckmann rearrangement of ketoximes reaction using triphenylphosphine/NBS as an effective catalyst in acetonitrile is developed. The results indicate that conversion of oximes to amides can reach excellent yields (76%-99% yield) under mild reaction conditions. There are many merits about this method, such as low corrosion, high yields, large-scale preparation, environmental friendliness, simple work-up procedure, and short reaction time. The reaction mechanism is also proposed. The absorption and emission spectrum characteristics of the compounds are also examined. The N-phenyl-[1,1′-biphenyl]-4-carboxamide and 4-nitro-N-phenylbenzamide have a large Stokes shifts of 118, 151 nm, respectively. The results indicate that altering the substitution of aromatic group can be an effective means to regulate the Stoke’s shift.

Key words: amide, Beckman rearrangement, N-bromosuccinimide, ketoximes, triphenylphosphine

CLC Number:  TQ453.2
[1] SMITH M B, MARCH J. March’s advanced organic chemistry: reactions, mechanisms and structures[M]. 5th ed. New York: Wiley, 2001: 1415.
[2] WESSERMEL K, ARPE H J. Industrial organic chemistry[M]. 4th ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 239.
[3] PARK S, CHOI Y A, HAN H, et al. Rh-catalyzed one-pot and practical transformation of aldoximes to amides[J]. Chemical Communications, 2003, 39(15): 1936-1937. DOI: 10.1039/B305268K.
[4] PENG X Y, LIU Y T, SHEN Q. et al. Bodipy photocatalyzed Beckmann rearrangement and hydrolysis of oximes under visible light[J]. Journal of Organic Chemistry, 2022, 87(18): 11958-11967. DOI: 10.1021/acs.joc.2c00813.
[5] VASCHETTO E G, CASUSCELLI S G, EIMER G A. Improvements in the Beckmann rearrangement process by using highly selective mesoporous catalysts[J]. Microporous and Mesoporous Materials, 2016, 221: 175-181. DOI: 10.1016/j.micromeso.2015.09.038.
[6] LI Q, YAN L Y, XIA D. et al. Organic chemistry[M]. [s.l.]∶[s.n.], 2011:2034.
[7] CAZZADOR G, MANZATO L, RONCHIN L, et al. A new sustainable multistep catalytic process from benzene to caprolactam: amination, hydroximation and Beckmann rearrangement promoted and catalyzed by trifluoroacetic acid[J]. Catalysis Letters, 2023, 153(9): 2763-2774. DOI: 10.1007/s10562-022-04207-9.
[8] 周云, 卢建国, 朱明乔. 环己酮肟贝克曼重排制己内酰胺绿色催化研究进展[J]. 合成纤维工业, 2015, 38(2): 51-56. DOI: 10.3969/j.issn.1001-0041.2015.02.013.
[9] DU C C, WANG Y B, DENG J. et al. Organocatalyzed Beckmann rearrangement of cyclohexanone oxime by trifluoroacetic anhydride in microreactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8714-8723. DOI: 10.1021/acs.iecr.2c01078.
[10] 孙超, 姚武冰, 张斌, 等. 锌催化的贝克曼重排反应[J]. 有机化学, 2018, 38(2): 457-463. DOI: 10.6023/cjoc201708018.
[11] 王珍妮, 赵滢, 陈祥铤, 等. SnCl2催化二苯酮肟贝克曼重排反应研究[J]. 化学研究与应用, 2018, 30(4): 653-656. DOI: 10.3969/j.issn.1004-1656.2018.04.034.
[12] 冯一格, 叶浙高, 郝仕油. 氢键驱动的二苯甲酮肟Beckmann重排反应研究[J]. 有机化学, 2019, 39(4): 1122-1128. DOI: 10.6023/cioc201809001.
[13] 范昕, 易容, 王芳, 等. 铜催化醛肟脱水/贝克曼重排选择性可切换反应[J]. 有机化学, 2018, 38(10): 2736-2748. DOI: 10.6023/cjoc201805044.
[14] MAEGAWA T, OISHI R, MAEKAWA R. et al. The reaction of ketoximes with hypervalent iodine reagents: Beckmann rearrangement and hydrolysis to ketones[J]. Synethesis, 2022, 54(18): 4095-4103. DOI: 10.1055/a-1835-2188.
[15] 张健, 刘园园, 冯维春, 等. 贝克曼重排的研究新进展[J]. 有机化学, 2019, 39(4): 961-973. DOI: 10.6023/cjoc201809031.
[16] MAHAJAN S, SHARMA B, KAPOOR K K. A solvent-free one step conversion of ketones to amides via Beckmann rearrangement catalyzed by FeCl3·6H2O in presence of hydroxylamine hydrochloride[J]. Tetrahedren Letters, 2015, 56(14): 1915-1918. DOI: 10.1016/j.tetlet.2015.02.110.
[17] REN C X, WANG Z Y, GAO Q W. et al. Novel bronsted acidic ionic liquids as high efficiency catalysts for liquid-phase Beckmann rearrangement[J]. Catalysts, 2023, 13(6): 974-978. DOI: 10.3390/catal13060978.
[18] WANG K W, WANG F M, ZHAI Y. et al. Application of zeolite in Beckmann rearrangement of cyclohexanone oxime[J]. Molecular Catalysis, 2023, 535:112881. DOI: 10.1016/j.mcat.2022.112881.
[19] JIN X, PENG R S, TONG W. et al. Investigation of the active centers and structural modifications for TS-1 in catalyzing the Beckmann rearrangement[J]. Catalysis Today, 2022, 405/406: 193-202. DOI: 10.1016/j.cattod.2022.05.033.
[20] XU F, WANG N G, TIAN Y P. et al. Ph3P/I2-catalyzed Beckmann rearrangement of ketoximes into amides[J]. Synthetic Communications, 2012, 42(23): 3532-3539. DOI: 10.1080/00397911.2011.585270.
[21] GANGULY N C, MONDAL P. Efficient iodine-mediated Beckmann rearrangement of ketoximes to amides under mild neutral conditions[J]. Synthesis, 2010, 42(21): 3705-3709. DOI: 10.1055/s-0030-1258217.
[22] PONZO V L, BIANCHI D A, KAUFMAN T S. Carbonyl transposition of α-hydroxyamidals mediated by triphenylphosphine-iodine: a new entry to tetrahydroisoquinolin-4-ones[J]. Tetrahedron Letters, 1998, 39(21): 3409-3412. DOI: 10.1016/S0040-4039(98)00535-8.
[23] 赵春阳, 董书达, 尹钰芸, 等. 超声波辅助下PPh3-I2共催化的室温Beckmann重排反应[J]. 化学试剂, 2018, 40(5): 502-506. DOI: 10.13822/j.cnki.hxsj.2018.05.024.
[24] BARRILLIER D, LEVILLAIN J, VAZEUX M. Halides-based electrophiles mediated epoxide ring-opening reactions of α,β-epoxysulfoxides in C6-series: deoxygenation versus dehydration and an overall 1,2-keto transposition[J]. Tetrahedron, 1994, 50(18): 5413-5424. DOI: 10.1016/S0040-4020(01)80698-0.
[25] BOLITT V, MIOSKOWSKI C, LEE S G. Direct preparation of 2-deoxy-D-glucopyranosides from glucals without Ferrier rearrangement[J]. Journal of Organic Chemistry, 1990, 55(23): 5812-5813. DOI: 10.1002/chin.199116264.
[26] TATAROGˇLU M, SUNGUR F A. Mechanistic insights into the challenges of organocatalytic Beckmann rearrangement reactions[J]. Organic & Biomolecular Chemistry, 2023, 21(6): 1254-1263. DOI: 10.1039/d2ob01641a.
[27] AN N, TIAN B X, PI H J. et al. Mechanistic insight into self-propagation of organo-mediated Beckmann rearrangement: a combined experimental and computational study[J]. Journal of Organic Chemistry, 2013, 78(9): 4297-4302. DOI: 10.1021/jo400278c.
[28] XIE F K, DU C, PANG Y D, et al. Lewis acid-assisted N-fluorobenzenesulfonimide-based electrophilic fluorine catalysis in Beckmann rearrangement[J]. Tetrahedron Letters, 2016, 57(51): 5820-5824. DOI: 10.1016/j.tetlet.2016.11.054.
[29] WANG Y, ZHU D P, TANG L. et al. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst[J]. Angewandte Chemie International Edition, 2011, 50(38): 8917-8921. DOI: 10.1002/anie.201102374.
[30] 姚武冰, 虞姜姜, 黄相韵, 等. 钴催化的高效贝克曼重排反应[J]. 高等学校化学学报, 2018, 39(5): 926-933. DOI: 10.7503/cjcu20170560.
[1] QIU Jian-hua, ZHANG Yan-wu, ZHANG Ya-tao, ZHANG Hao-qin, LIU Jin-dun. Modification of Microporous Cellulose Acetate Membrane with Anionic Polyacrylamide by Chemical Surface-grafted Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 65-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[2] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[3] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[4] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[5] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[6] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[7] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69 -83 .
[8] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[9] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[10] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .