Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 116-121.doi: 10.16088/j.issn.1001-6600.2021120903
Previous Articles Next Articles
ZHAO Shouxiang1,2, TANG Gaohua3*, NAN Jizhu1
CLC Number:
[1] BECK I. Coloring of commutative rings[J]. Journal of Algebra, 1988, 116(1): 208-226. [2] ANDERSON D F, LIVINGSTON P S. The zero-divisor graph of a commutative ring[J]. Journal of Algebra, 1999, 217(2): 434-447. [3] REDMOND S P. The zero-divisor graph of a non-commutative ring[J]. International Journal of Commutative Rings, 2002, 1(4): 203-211. [4] BEHBOODI M, BEYRANVAND R. Strong zero-divisor graphs of non-commutative rings[J]. International Journal of Algebra, 2008, 2(1): 25-44. [5] ALIBEMANI A, BAKHTYIARI M, NIKANDISH R, et al. The annihilator ideal graph of a commutative ring[J]. Journal of the Korean Mathematical Society, 2015, 52(2): 417-429. [6] 徐承杰,易忠,郑英. 形式三角矩阵环的零因子图[J]. 数学杂志, 2013, 33(5): 891-901. [7] 曾庆雨,易忠,唐高华,等. 矩阵环Mn(R)的中心图[J]. 西北师范大学学报(自然科学版), 2016, 52(5): 32-35. [8] 郭述锋,黄逸飞,易忠. 群环ZnG的零因子图的性质Ⅲ[J]. 数学的实践与认识, 2019, 49(12): 278-285. [9] 唐高华,李玉,张恒斌,等. 一类有零因子的有限环的结构[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 67-73. [10] 韦扬江, 梁艺耀,唐高华,等. 模n高斯整数环的商环的立方映射图[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 53-61. [11] 唐高华,李玉,吴严生. 群环Zn[i]G的零因子图的性质[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 109-115. [12] 韦扬江,唐高华. Zn[i]的平方映射图[J]. 数学杂志, 2016, 36(4): 676-682. [13] 韦扬江,梁艺耀,唐高华. 高斯整数环的商环的5次幂映射图[J]. 四川师范大学学报(自然科学版), 2018, 41(2): 210-219. [14] ZHAO S X, NAN J Z, TANG G H. Quasy-zero-divisor graphs of non-commutative rings[J]. Journal of Mathematical Research with Applications, 2017, 37(2): 135-147. [15] BONDY J A, MURTY U S R. Graph theory[M]. New York: Springer, 2008. [16] 华罗庚,万哲先. 华罗庚文集代数卷I[M]. 北京:科学出版社,2010. |
[1] | LIANG Chunmei, WANG Fanggui, WU Xiaoying. Graded Simple Injective Modules and Their Characterization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 113-120. |
[2] | WEI Yangjiang, LIANG Yiyao, TANG Gaohua, SU Leilei, CHEN Weining. Cubic Mapping Graphs on the Quotient Ringsof the Gaussian Integer Rings of Modulo n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 53-61. |
[3] | TANG Gaohua,LI Yu, WU Yansheng. Properties of Zero-divisor Graph of Group Ring Zn[i]G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 109-115. |
[4] | GUO Shu-feng, XIE Guang-ming, YI Zhong. Properties of Zero-divisor Graphs of Group Rings ZnG [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 68-75. |
[5] | WEI Yin-hu, PANG Gui-xi, WU Jiao, XIE Guang-ming. Invariant Gauss Extensions in Q(K G) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 55-57. |
[6] | TANG Gao-hua, SU Hua-dong, YI Zhong. Structure of the Unit Group of Zn[i] [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 38-41. |
[7] | XIE Guang-ming, LIU Feng, WEI Chun-hao. Graded Maps Over Q and Graded Extensions of Type (e) in K[Q,σ] [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 42-46. |
[8] | QIN Qing-ling, YI Zhong, HUANG Yi-fei. Zero-Divisor Graph of Group Ring ZnS3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 54-57. |
[9] | HUANG Yi-fei, YI Zhong, QIN Qing-ling. Zero-divisor Graph of Group Ring ZnD4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 15-20. |
[10] | GUO Shufeng , XIE Guangming, YI Zhong. Properties of Zero-divisor Graphs of Idealizations of Group Rings ZnG [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 66-71. |
[11] | TANG Gaohua, WU Yansheng, ZHANG Hengbin, LI Yu. Strong 2-sum Property of Local Rings and Their Extensions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 72-77. |
|