Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 81-90.doi: 10.16088/j.issn.1001-6600.2020121505

Previous Articles     Next Articles

Research on Backlight Image Enhancement Based on Convolutional Neural Network

MA Chengxu, ZENG Shangyou*, ZHAO Junbo, CHEN Hongyang   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-12-15 Revised:2021-02-08 Published:2022-05-31

Abstract: Most of the existing algorithms can only enhance the backlight images with specific illumination, but cannot solve the backlight images with various illuminations efficiently. Therefore, an image enhancement algorithm based on convolutional neural network is proposed in this paper, and a new network architecture that integrates decomposition, recovery and adjustment is built at the same time. Using Retinex theory, a decomposition network is designed to decompose the backlight image and its corresponding highlight image into reflectance map and illumination map. The reflectance component of highlight image is used as the denoising reference to repair the dark light defect, and the color saturation module is added to retain the color and other details in the image restoration process. The brightness of the backlight images can be adjusted adaptively according to the user's preference. The enhancement ratio (the ratio between the target light source and the image light source) is set as the adjustment index. When the backlight images are enhanced to the high-light images, the enhancement ratio should be greater than 1. Validated on multiple public datasets (LOL, DICM, NPE), the research shows that this method can effectively enhance the brightness of backlight images, improve image quality, ensure that image details are not lost, and avoid color distortion. It has good effects on backlight images with different illuminations, and the results of subjective and objective evaluation indicators are better than the existing algorithms, which has application value for the development of smart city security and artificial intelligence.

Key words: backlight image enhancement, convolutional neural network, Retinex, color saturation, artificialintelligence

CLC Number: 

  • TP391.41
[1] RAHMAN Z U, JOBSON D J, WOODELL G A, et al. Retinex processing for automatic image enhancement[J]. Journal of Electronic Imaging, 2004, 13(1): 100-110. DOI: 10.1117/1.1636183.
[2] TSAI C M, YEH Z M. Contrast enhancement by automatic and parameter-free piecewise linear transformation for color images[J]. IEEE Transactions on Consumer Electronics, 2008, 54(2): 213-219. DOI: 10.1109/TCE.2008.4560077.
[3] 庞小龙, 贺志华, 王玄, 等. 基于直方图均衡算法的低照度巡检图像增强方法[J]. 设备管理与维修, 2020(18): 76-77. DOI: 10.16621/j.cnki.issn1001-0599.2020.09D.43.
[4] 郭倩, 朱振峰, 常冬霞, 等. 融合全局与局部区域亮度的逆光图像增强算法[J]. 信号处理, 2018, 34(2): 140-147. DOI: 10.16798/j.issn.1003-0530.2018.02.003.
[5] 玛利亚木古丽·麦麦提, 吐尔洪江·陈布都克力木, 阿卜杜如苏力·奥斯曼, 等. 结合小波变换和同态滤波的医学图像增强算法[J]. 电子设计工程, 2020, 28(24):1-5. DOI: 10.14022/j.issn1674-6236.2020.24.001.
[6] JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. DOI: 10.1109/83.597272.
[7] 张红颖, 赵晋东. HSV空间的RetinexNet低照度图像增强算法[J]. 激光与光电子学进展, 2020, 57(20): 294-301.
[8] 刘佳敏, 何宁, 尹晓杰. 基于Retinex-UNet算法的低照度图像增强[J]. 计算机工程与应用, 2020, 56(22): 211-216.
[9] 杨微, 姚冰莹, 朱晓凤. 基于Retinex理论的低照度图像增强技术研究[J]. 现代计算机, 2020(29): 48-54.
[10] 闫保中, 韩旭东, 何伟. 基于Retinex理论改进的低照度图像增强算法[J]. 应用科技, 2020, 47(5): 74-78.
[11] 韩梦妍, 李良荣, 蒋凯. 基于光照图估计的Retinex低照度图像增强算法研究[J]. 计算机工程, 2021, 47(10): 201-206.
[12] GUO X J, LI Y, LING H B. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. DOI: 10.1109/TIP.2016.2639450.
[13] WANG W J, WEI C, YANG W H, et al. GLADNet: Low-light enhancement network with global awareness[C]// 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). Piscataway, NJ: IEEE, 2018: 751-755. DOI: 10.1109/FG.2018.00118.
[14] WEI C, WANG W J, YANG W H, et al. Deep retinex decomposition for low-light enhancement[EB/OL]. (2018-08-14)[2021-02-08]. https://arxiv.org/pdf/1808.04560.pdf.
[15] ZHANG Y H, ZHANG J W, GUO X J. Kindling the darkness: A practical low-light image enhancer[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York, NY: Association for Computing Machinery, 2019: 1632-1640. DOI: 10.1145/3343031.3350926.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015. Berlin: Springer, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28.
[17] 梁晓萍, 罗晓曙. 基于遗传自适应的维纳滤波图像去模糊算法[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 17-23. DOI: 10.16088/j.issn.1001-6600.2017.04.003.
[18] 薛洋, 曾庆科, 夏海英, 等. 基于卷积神经网络超分辨率重建的遥感图像融合[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 33-41. DOI: 10.16088/j.issn.1001-6600.2018.02.005.
[19] 孙妤喆, 卢磊, 罗晓曙, 等. 结合非局部均值滤波的双边滤波图像去噪方法[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 32-38. DOI: 10.16088/j.issn.1001-6600.2017.02.005.
[20] 吴若有, 王德兴, 袁红春. 基于注意力机制和卷积神经网络的低照度图像增强[J]. 激光与光电子学进展, 2020, 57(20): 214-221.
[21] LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation[C]// 2012 19th IEEE International Conference on Image Processing. Piscataway, NJ: IEEE, 2012: 965-968. DOI: 10.1109/ICIP.2012.6467022.
[22] WANG S H, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548. DOI: 10.1109/TIP.2013.2261309.
[23] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600-612. DOI: 10.1109/TIP.2003.819861.
[24] YAO S S, LIN W S, ONG E P, et al. Contrast signal-to-noise ratio for image quality assessment[C]// IEEE International Conference on Image Processing 2005. Piscataway, NJ: IEEE, 2005. DOI: 10.1109/ICIP.2005.1529771.
[25] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. DOI: 10.1109/LSP.2012.2227726.
[1] ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56.
[2] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[3] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[4] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[5] YAN Hao, XU Hongbo, SHEN Yinghan, CHENG Xueqi. Research on Open Chinese Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 64-71.
[6] FAN Rui, JIANG Pinqun, ZENG Shangyou, XIA Haiying, LIAO Zhixian, LI Peng. Design of Lightweight Convolution Neural Network Based on Multi-scale Parallel Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 50-59.
[7] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[8] XUE Yang,ZENG Qingke,XIA Haiying,WANG Wentao. Remote Sensing Image Fusion Based on Convolutional Neural Network Super-resolution Reconstruction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .