Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 27-36.doi: 10.16088/j.issn.1001-6600.2021042106
Previous Articles Next Articles
TIAN Sheng*, GAN Zhiheng, LÜ Qing
CLC Number:
[1] XIONG R, CAO J Y, YU Q Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2017, 6: 1832-1843. DOI: 10.1109/ACCESS.2017.2780258. [2] 王瑞, 宋树祥, 夏海英. 融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 1-10. DOI: 10.16088/j.issn.1001-6600.2020061109. [3] 李小霞, 赵金镭. 电动汽车电池荷电状态估算方法研究[J]. 电子设计工程, 2021, 29(4): 177-180, 185. [4] BI J, WANG Y X, SAI Q Y, et al. Estimating remaining driving range of battery electric vehicles based on real-world data: A case study of Beijing, China[J]. Energy, 2019, 169: 833-843. DOI: 10.1016/j.energy.2018.12.061. [5] ZHAI G R, LIU S J, WANG Z G, et al. State of energy estimation of lithium titanate battery for rail transit application[J]. Energy Procedia, 2017, 105: 3146-3151. DOI: 10.1016/j.egypro.2017.03.681. [6] LI K Y, WEI F, TSENG K J, et al. A practical lithium-ion battery model for state of energy and voltage responses prediction incorporating temperature and ageing effects[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6696-6708. DOI: 10.1109/TIE.2017.2779411. [7] 陈德海, 任永昌, 华铭, 等. 基于STM32-OCV法的纯电动汽车剩余里程预测[J]. 电子技术应用, 2017, 43(12): 33-35, 39. DOI: 10.16157/j.issn.0258-7998.172168. [8] 林仕立, 宋文吉, 吕杰, 等. 基于电池SOE预测电动汽车的续驶里程[J]. 电池, 2017, 47(3): 137-139. DOI: 10.19535/j.1001-1579.2017.03.003. [9] 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018: 87-88. [10] WANG Z, WANG X H, WANG L Z, et al. Research on electric vehicle (EV) driving range prediction method based on PSO-LSSVM[C]// 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Piscataway, NJ: IEEE, 2017: 260-265. DOI: 10.1109/ICPHM.2017.7998338. [11] 段化娟, 尉永清, 刘培玉, 等. 一种面向不平衡分类的改进多决策树算法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 72-80. DOI: 10.16088/j.issn.1001-6600.2020.02.008. [12] SARRAFAN K, MUTTAQI K M, SUTANTO D, et al. A real-time range indicator for EVs using web-based environmental data and sensorless estimation of regenerative braking power[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (6): 4743-4756. DOI: 10.1109/TVT.2018.2829728. [13] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34-46. DOI: 10.16088/j.issn.1001-6600.2020080902. [14] SUN S, ZHANG J, BI J, et al. A machine learning method for predicting driving range of battery electric vehicles[J]. Journal of Advanced Transportation, 2019, 2019: 4109148. DOI: 10.1155/2019/4109148. [15] ZHAO L, YAO W, WANG Y, et al. Machine learning-based method for remaining range prediction of electric vehicles[J]. IEEE Access, 2020, 8: 212423-212441. DOI: 10.1109/ACCESS.2020.3039815. [16] MODI S, BHATTACHARYA J, BASAK P. Convolutional neural network-bagged decision tree: a hybrid approach to reduce electric vehicle's driver's range anxiety by estimating energy consumption in real-time[J]. Soft Computing, 2021, 25 (3): 2399-2416. DOI: 10.1007/s00500-020-05310-y. [17] MURARI A, PELUSO E, LUNGARONI M, et al. Application of symbolic regression to the derivation of scaling laws for tokamak energy confinement time in terms of dimensionless quantities[J]. Nuclear Fusion, 2016, 56(2): 026005. DOI: 10.1088/0029-5515/56/2/026005. [18] 马炫, 李星, 唐荣俊, 等. 一种求解符号回归问题的粒子群优化算法[J]. 自动化学报, 2020, 46(8): 1714-1726. DOI: 10.16383/j.aas.c180035. [19] 韩博文. 考虑实时需求的需求响应式公交调度方法研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 9-20. DOI: 10.16088/j.issn.1001-6600.2019.03.002. [20] NEMBHARD D A, SUN Y Z. A symbolic genetic programming approach for identifying models of learning-by-doing[J]. Computers & Industrial Engineering, 2019, 131: 524-533. DOI: 10.1016/j.cie.2018.08.020. [21] PAN B Y. Application of XGBoost algorithm in hourly PM2. 5 concentration prediction[J]. IOP Conference Series: Earth and Environmental Science, 2018, 113: 012127. DOI: 10.1088/1755-1315/113/1/012127. [22] 武康康, 周鹏, 陆叶, 等. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20. DOI: 10.16088/j.issn.1001-6600.2020062602. [23] DHALIWAL S S, NAHID A A, ABBAS R. Effective intrusion detection system using XGBoost[J]. Information, 2018, 9(7): 149. DOI: 10.3390/info9070149. [24] LI W, YIN Y B, QUAN X W, et al. Gene expression value prediction based on XGBoost algorithm[J]. Frontiers in Genetics, 2019, 10: 1027. DOI: 10.3389/fgene.2019.01077. [25] DONG W, HUANG Y M, LEHANE B, et al. XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring[J]. Automation in Construction, 2020, 114: 103155. DOI: 10.1016/j.autcon.2020.103155. [26] MA J B, GAO X Y. A filter-based feature construction and feature selection approach for classification using Genetic Programming[J]. Knowledge-Based Systems, 2020, 196: 105806. DOI: 10.1016/j.knosys.2020.105806. [27] 张灿龙, 李燕茹, 李志欣, 等. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23. DOI: 10.16088/j.issn.1001-6600.2020.05.002. [28] 杨弦, 党延忠, 吴江宁. 基于符号回归的产品评论数量与购买数量关系分析[J]. 系统工程学报, 2020, 35(3): 289-300. DOI: 10.13383/j.cnki.jse.2020.03.001. |
[1] | WANG Rui, SONG Shuxiang, XIA Haiying. Estimation of Lithium Battery SOC with Fusion Impedance Model and Extended Kalman Filtering [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 1-10. |
|