Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 68-81.doi: 10.16088/j.issn.1001-6600.2021060905

Previous Articles     Next Articles

Estimation and Test for Asymmetric DAR Model

CHEN Zhongxiu1, ZHANG Xingfa1,2, XIONG Qiang1,2*, SONG Zefang1,2   

  1. 1. School of Economics and Statistics, Guangzhou University, Guangzhou Guangdong 510006, China;
    2. Lingnan Research Institute of Statistical Science, Guangzhou University, Guangzhou Guangdong 510006, China
  • Received:2021-06-09 Revised:2021-07-14 Online:2022-01-25 Published:2022-01-24

Abstract: The estimation and testing problems of asymmetric double autoregression (DAR) model are studied in this paper. The parametric component by virtue of quasi maximum likelihood estimation (QMLE) method is firstly proposed. Under some regularity conditions, the resulting estimators are consistent and asymptotically normal. Then, a quasi-likelihood ratio (QLR) statistic to detect asymmetric effect is proposed. The asymptotic properties of the testing statistic are established under null and alternative hypotheses. Finally, both simulation studies and empirical application well demonstrate the finite sample performance of the proposed estimation methodology and testing procedure.

Key words: asymmetric DAR model, QMLE, asymmetry test, asymptotic property

CLC Number: 

  • O212.1
[1] DICKEY D A, FULLER W A. Distribution of the estimators for autoregressive time series with a unit root[J]. Journal of the American Statistical Association, 1979, 74(366a): 427-431.
[2]DAVIS R A, KNIGHT K, LIU J. M-estimation for autoregressions with infinite variance[J]. Stochastic Processes and their Applications, 1992, 40(1): 145-180.
[3]CHAN N H, TRAN L T. On the first-order autoregressive process with infinite variance[J]. Econometric Theory, 1989, 5(3): 354-362.
[4]LING S Q. A double AR(p) model: structure and estimation[J]. Statistica Sinica, 2007, 17(1): 161-175.
[5]LI D, LING S Q, ZHANG R M. On a threshold double autoregressive models[J]. Journal of Business and Economic Statistics, 2016, 34: 68-80.
[6]朱华锋. 几类可观测序列驱动的条件异方差模型研究[D]. 广州:广州大学, 2017.
[7]ZHU Q Q, ZHENG Y,LI G D. Linear double autoregression[J]. Journal of Econometrics, 2018, 207(1): 162-174.
[8]JIANG F Y, LI D,ZHU K. Non-standard inference for augmented double autoregressive models with null volatility coefficients[J]. Journal of Econometrics, 2020, 215(1): 165-183.
[9]TAN S H,ZHU Q Q. Asymmetric linear double autoregression[EB/OL].(2020-11-21)[2021-06-09]. https://arxiv.org/abs/2007.09649.
[10]王辉. 带厚尾噪声的TGARCH模型的估计及检验: 一个统一的框架[J]. 中国科学:数学, 2016, 46(6): 831-852.
[11]张筱峰, 郭沥阳. 沪深300股指期现市场多阶段波动溢出效应研究-基于非对称BEKK-GARCH模型[J]. 现代财经(天津财经大学学报)2020, 40(3): 53-66.
[12]LING S Q,McALEER M. Asymptotic theory for a vector ARMA-GARCH model[J]. Econometric Theory, 2003, 19: 280-310.
[13]AMEMIYA T. Advanced econometrics[M]. Cambridge, MA: Harvard University Press, 1985.
[14]NELSON D B. Conditional heteroskedasticity in asset returns: a new approach[J]. Econometrica, 1991, 59(2): 347-370.
[1] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[2] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[3] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[4] TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12 -19 .
[5] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20 -26 .
[6] WEI Zhenhan, SONG Shuxiang, XIA Haiying. State-of-charge Estimation Using Random Forest for Lithium Ion Battery[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 27 -33 .
[7] XU Yuanjing, HU Weiping. Identification of Pathological Voice of Different Levels Based on Random Forest[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 34 -41 .
[8] ZHANG Canlong, SU Jiancai, LI Zhixin, WANG Zhiwen. Infrared-Visible Target Tracking Basedon AdaBoost Confidence Map[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 42 -50 .
[9] LIU Dianting, WU Lina. Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 51 -58 .
[10] JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59 -66 .