Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 30-42.doi: 10.16088/j.issn.1001-6600.2021060918
Previous Articles Next Articles
ZENG Qingfan, QIN Yongsong, LI Yufang*
CLC Number:
[1] PAELINCK J, KLAASSEN L. Spatial econometrics[M]. Farnborough: Saxon House, 1979. [2]ANSELIN L. Spatial econometrics: methods and models[M]. The Netherlands: Kluwer Academic, 1988. [3]KELEJIAN H H, PRUCHA I R. On the asymptotic distribution of the Moran I test statistic with applications[J]. Journal of Econometrics, 2001, 104: 219-257. [4]LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial econometric models[J]. Econometrica, 2004, 72: 1899-1925. [5]LEE L F. GMM and 2SLS estimation of mixed regressive,spatial autoregressive models[J]. Journal of Econometrics, 2007, 137: 489-514. [6]KAPOOR M, KELEJIAN H H, PRUCHA I R. Panel data models with spatially correlated error components[J]. Journal of Econometrics, 2007, 140: 97-130. [7]LIN Z P. ML estimation of spatial panel data geographically weighted regression model[C]// IEEE International Conference on Management and Service Science, Wuhan: IEEE, 2011: 1-4. [8]LEE L F, YU J. Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics, 2010, 154(2): 165-85. [9]ELHORST J P. Specification and estimation of spatial panel data models[J]. International Regional Science Review, 2003, 26: 244-268. [10]邓明.时变系数空间自回归面板数据模型的极大似然估计[J].统计研究, 2016, 9: 96-103. [11]邓明,钱争鸣.混合形式的变系数空间面板数据模型:一个多阶段估计[J].数理统计与管理, 2014, 33(3): 490-507. [12]BALTAGI B H, PIROTTE A. Seemingly unrelated regressions with spatial error components[J]. Empirical Economics, 2011, 40(1): 5-49. [13]KELEJIAN H H, PRUCHA I R. A generalized moments estimator for the autoregressive parameter in a spatial model[J]. International Economic Review, 1999, 40(2): 509-33. [14]OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249. [15]OWEN A B. Empirical likelihood ratio confidence regions[J]. Annals of Statistics, 1990, 18(1): 90-120. [16]CHUANG C S, CHAN N H. Empirical likelihood for autoregressive models, with applications to unstable time series[J]. Statistica Sinica, 2002, 12(2): 387-407. [17]OWEN A B. Empirical likelihood for linear models[J]. Annals of Statistics, 1991, 19(4): 1725-1747. [18]KOLACZYK E D. Empirical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4(1): 199-218. [19]GUO H, ZOU C, WANG Z, et al. Empirical likelihood for high-dimensional linear regression models[J]. Metrika, 2014, 77(7): 921-945. [20]QIN J, WONG A. Empirical likelihood in a semi-parametric model[J]. Scandinavian Journal of Statistics, 1996, 23(2): 209-219. [21]BERTAIL P. Empirical likelihood in nonparametric and semiparametric models[M]. 北京: 科学出版社, 2004. [22]NORDMAN D J. An empirical likelihood method for spatial regression[J]. Metrika, 2008, 68(3): 351-363. [23]KOSTOV P. Empirical likelihood estimation of the spatial quantile regression[J]. Journal of Geographical Systems, 2013, 15: 51-69. [24]QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83: 1-25. [25]ZELLNER A. An efficient method of estimating seemingly unrelated regressions and test of aggregation bias[J]. Journal of the American Statistical Association. 1962, 57(298): 348-368. |
[1] | CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68-81. |
[2] | LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149. |
[3] | ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45. |
[4] | QIN Yong-song, YANG Cui-lian. Empirical Likelihood for Marginal Joint Probability Density Functions of a Negatively Associated Sample [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 22-29. |
|