Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 30-42.doi: 10.16088/j.issn.1001-6600.2021060918

Previous Articles     Next Articles

Empirical Likelihood Inference for a Class of Spatial Panel Data Models

ZENG Qingfan, QIN Yongsong, LI Yufang*   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2021-06-09 Revised:2021-07-17 Online:2022-01-25 Published:2022-01-24

Abstract: The empirical likelihood inference for a time-varying coefficient spatial panel data model with spatial autocorrelation and spatial error autocorrelation is investigated in this paper. By transferring the quadratic form of the estimation equation into a linear form of a martingale difference sequence, the empirical likelihood ratio statistic of the model parameters is constructed. It is shown that the limit distribution of the statistic is chi-square distribution under certain conditions.

Key words: spatial panel data model, time varying coefficient, martingale difference sequence, empirical likelihood, asymptotic property

CLC Number: 

  • O212.7
[1] PAELINCK J, KLAASSEN L. Spatial econometrics[M]. Farnborough: Saxon House, 1979.
[2]ANSELIN L. Spatial econometrics: methods and models[M]. The Netherlands: Kluwer Academic, 1988.
[3]KELEJIAN H H, PRUCHA I R. On the asymptotic distribution of the Moran I test statistic with applications[J]. Journal of Econometrics, 2001, 104: 219-257.
[4]LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial econometric models[J]. Econometrica, 2004, 72: 1899-1925.
[5]LEE L F. GMM and 2SLS estimation of mixed regressive,spatial autoregressive models[J]. Journal of Econometrics, 2007, 137: 489-514.
[6]KAPOOR M, KELEJIAN H H, PRUCHA I R. Panel data models with spatially correlated error components[J]. Journal of Econometrics, 2007, 140: 97-130.
[7]LIN Z P. ML estimation of spatial panel data geographically weighted regression model[C]// IEEE International Conference on Management and Service Science, Wuhan: IEEE, 2011: 1-4.
[8]LEE L F, YU J. Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics, 2010, 154(2): 165-85.
[9]ELHORST J P. Specification and estimation of spatial panel data models[J]. International Regional Science Review, 2003, 26: 244-268.
[10]邓明.时变系数空间自回归面板数据模型的极大似然估计[J].统计研究, 2016, 9: 96-103.
[11]邓明,钱争鸣.混合形式的变系数空间面板数据模型:一个多阶段估计[J].数理统计与管理, 2014, 33(3): 490-507.
[12]BALTAGI B H, PIROTTE A. Seemingly unrelated regressions with spatial error components[J]. Empirical Economics, 2011, 40(1): 5-49.
[13]KELEJIAN H H, PRUCHA I R. A generalized moments estimator for the autoregressive parameter in a spatial model[J]. International Economic Review, 1999, 40(2): 509-33.
[14]OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249.
[15]OWEN A B. Empirical likelihood ratio confidence regions[J]. Annals of Statistics, 1990, 18(1): 90-120.
[16]CHUANG C S, CHAN N H. Empirical likelihood for autoregressive models, with applications to unstable time series[J]. Statistica Sinica, 2002, 12(2): 387-407.
[17]OWEN A B. Empirical likelihood for linear models[J]. Annals of Statistics, 1991, 19(4): 1725-1747.
[18]KOLACZYK E D. Empirical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4(1): 199-218.
[19]GUO H, ZOU C, WANG Z, et al. Empirical likelihood for high-dimensional linear regression models[J]. Metrika, 2014, 77(7): 921-945.
[20]QIN J, WONG A. Empirical likelihood in a semi-parametric model[J]. Scandinavian Journal of Statistics, 1996, 23(2): 209-219.
[21]BERTAIL P. Empirical likelihood in nonparametric and semiparametric models[M]. 北京: 科学出版社, 2004.
[22]NORDMAN D J. An empirical likelihood method for spatial regression[J]. Metrika, 2008, 68(3): 351-363.
[23]KOSTOV P. Empirical likelihood estimation of the spatial quantile regression[J]. Journal of Geographical Systems, 2013, 15: 51-69.
[24]QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83: 1-25.
[25]ZELLNER A. An efficient method of estimating seemingly unrelated regressions and test of aggregation bias[J]. Journal of the American Statistical Association. 1962, 57(298): 348-368.
[1] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68-81.
[2] LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149.
[3] ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45.
[4] QIN Yong-song, YANG Cui-lian. Empirical Likelihood for Marginal Joint Probability Density Functions of a Negatively Associated Sample [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[2] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[3] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[4] TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12 -19 .
[5] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20 -26 .
[6] WEI Zhenhan, SONG Shuxiang, XIA Haiying. State-of-charge Estimation Using Random Forest for Lithium Ion Battery[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 27 -33 .
[7] XU Yuanjing, HU Weiping. Identification of Pathological Voice of Different Levels Based on Random Forest[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 34 -41 .
[8] ZHANG Canlong, SU Jiancai, LI Zhixin, WANG Zhiwen. Infrared-Visible Target Tracking Basedon AdaBoost Confidence Map[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 42 -50 .
[9] LIU Dianting, WU Lina. Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 51 -58 .
[10] JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59 -66 .